Show that the relation R in the set A = { 1, 2, 3, 4, 5 } given by
R = { (a, b) : | a – b | is even}, is an equivalence relation. Show that all the elements of {1, 3, 5} are related to each other and all the elements of {2, 4} are related to each other. But no element of {1, 3, 5} is related to any element of {2, 4}.
Let R be the relation in the set {1. 2, 3, 4} given by R = {(1,2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}.
Choose the correct answer.
(A) R is reflexive and symmetric but not transitive.
(B) R is reflexive and transitive but not symmetric.
(C) R is symmetric and transitive but not reflexive.
(D) R is an equivalence relation.
Let A = {1, 2, 3, 4}
R = {(1, 2), (2, 2), (1, 1), (4, 4), (1,3), (3, 3), (3, 2)}
R is reflexive as (a, a) ∈ R ∀ a ∈ A R is not symmetric as (1, 2) ∈ R but (2, 1) ∉ R R is transitive as (a, b), (b, c) ∈ R ⇒ (a, c) ∈ R ∴ R is reflexive and transitive but not symmetric.
Show that the relation R in the set A of points in a plane given by R = {(P, Q) : distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.
Show that each of the relation R in the set A = {x ∈ Z : 0 ≤ x ≤ 12 }, given by
(i) R = {(a, b) : | a – b | is a multiple of 4 }
(ii) R = {(a, b) : a = b} is an equivalence relation. Find the set of all elements related to 1 in each case.
Consider the identity function 1N : N → N defined as lN(x) = x ∀ x ∈ N. Show that although IN is onto but IN + IN : N → N defined as
(IN + IN) (x) = IN(x) + IN(x) = x + x = 2 x is not onto.