If f(x) = loge6 - x2 + x - 6, then

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

121.

According to Newton-Raphson method, the value of 12. upto three places of decimal will be

  • 3.463

  • 3.462

  • 3.467

  • None of these


122.

If for all x, y  N, there exists a function f(x) satisfying f(x + y) = f(x) · f(y) such that f(1) = 3 and x=1nfx = 120, then value of n will be

  • 4

  • 5

  • 6

  • None of these


Advertisement

123.

If f(x) = loge6 - x2 + x - 6, then domain of f(x) has how many integral values of x ?

  • 5

  • 4

  • infinite

  • None of these


D.

None of these

Given, fx = loge6 - x2 + x - 6The function f(x) is defined, if     6 - x2 + x - 6 > 0          x2 + x - 6 < 6 - 6 < x2 + x - 6 < 6             x2 + x - 6 < 6           x2 + x - 12 < 0                               x  - 4, 3         ...i

Now, if - 6 < x2 + x - 6    x2 + x > 0  xx + 1 >0             x  0,                         ...ii

From Eqs. (i) and (ii), we get

           x  0, 3 f(x) has only two integral values       x = 1, 2


Advertisement
124.

f(x) = (20 - x4)1/4 for 0 < x < 5, then ff12 is equal to

  • 2- 4

  • 2- 3

  • 2- 2

  • 2- 1


Advertisement
125.

8 + 28 + 8 - 288 + 28 - 8 - 28 is equal to

  • 2

  • 7

  • 7

  • 2


126.

x = log0.1(0.001), y = log9(81), then x - 2y is equal to

  • 3 - 2

  • 3 - 2

  • 2 - 1

  • 2 - 2


127.

If x - 4x2 - 5x - 2k = 2x - 2 - 1x + k',then k is equal to

  • - 3

  • - 2

  • 2

  • 3


128.

202 - 3x2 = 4053x2 - 2, then x is equal to

  • ± 32

  • ± 23

  • ± 43

  • ± 54


Advertisement
129.

Let A = x  R, x  0, - 4  x  4 and f : A  R defined by f(x) = xx for x  A. Then, the range of f is

  • {1, - 1}

  • x : 0  x  1

  • (1)

  • x : - 4 x  0


130.

If log2 = a, log3 = b, log7 = c and 6x = 7x + 4 then x is equal to

  • 4bc + a - b

  • 4ca + b - c

  • 4cc - a - b

  • 4aa + b - c


Advertisement