Let fx = αx2x + 1, x &ne

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

481.

The value of log220log280 - log25log2320 is equal to

  • 5

  • 6

  • 7

  • 8


482.

Let B be a boolean algebra. If a, b  B, then (x - y)' is equal to

  • a . b

  • x . y'

  • x' . y'

  • x' + y'


483.

The output of the circuit is

  • x3 . (x'1 + x2)

  • (x'3 + x2) . x1

  • x'3 . (x1 + x2)

  • (x1 + x2) . x3


484.

The boolean expression corresponding to the combinational circuit is

  • (x1 + x2 · x'3)x2

  • (x1 . (x2 + x3)) + x2

  • (x1 . (x2 + x'3)) + x2

  • (x1 + (x2 + x'3)) + x3


Advertisement
485.

In a boolean algebra B with respect to '+' and '.', x' denotes the negation of x B. Then

  • x - x' = 1 and x · x' = 1

  • x + x' = 1 and x . x' = 0

  • x + x' = 0 and x . x' = 0

  • x + x' = 0 and x . x' = 0


486.

If a function f satisfies f {f(x)} = x + 1 for all real values of x and if f (0) = 12, then f(1) is equal to

  • 12

  • 1

  • 32

  • 2


487.

The domain of the function f(x) = log2(log3(log4(x))) is

  • - , 4

  • 4, 

  • (0, 4)

  • 1, 


488.

If f : R R and g : R  R are defined by f (x) = x - 3 and g(x) = x2 + 1, then the values of x for which g{f(x)} = 10 are

  • 0, - 6

  • 2, - 2

  • 1, - 1

  • 0, 6


Advertisement
489.

loge1 + 3x1 - 2x is equal to

  • - 5x - 5x22 - 35x33 - ...

  • - 5x + 5x22 - 35x33 + ...

  • 5x - 5x22 + 35x33 - ...

  • 5x + 5x22 + 35x33 + ...


Advertisement

490.

Let fx = αx2x + 1, x  - 1. The value of α for which f (a) = a, (a  0) is

  • 1 - 1a

  • 1a

  • 1 + 1a

  • 1a - 1


C.

1 + 1a

We have, fx = αx2x + 1, x  - 1According to question           fa = a αa2a + 1 = a      αa2 = a2 + a          α = a2 + aa2 = 1 + 1a


Advertisement
Advertisement