Find the sum to n terms the series  and deduce the sum to infi

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

121. Find the sum of the squares of first n natural numbers. Or

Evaluate  space space sum straight n squared space space space or space space space space sum from straight k equals 1 to straight n of space straight k squared
129 Views

 Multiple Choice QuestionsLong Answer Type

122. Find the sum of the cubes of first n natural numbers.  Or

Evaluate  space space sum straight n cubed space space or space space space sum from straight k space equals 1 to straight n of space straight k cubed  Also, show that sum straight n cubed space equals space left parenthesis sum straight n right parenthesis squared
110 Views

 Multiple Choice QuestionsShort Answer Type

123. Find the sum of n terms of the series whose nth term is

space space fraction numerator 1 cubed plus 2 cubed plus 3 cubed plus...... plus straight n cubed over denominator straight n end fraction.
128 Views

 Multiple Choice QuestionsLong Answer Type

124.

Find the sum to n terms of the series:

1 . 2 . 4 + 2. 3 . 7 + 3. 4. 10 +..............

161 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

125. Find the sum of the cubes of first n odd natural numbers. Or Sum the series to n terms l3 + 33 + 53 +..........
90 Views

Advertisement

126.

Find the sum to n terms the series fraction numerator 1 over denominator 1.2 end fraction plus fraction numerator 1 over denominator 2.3 end fraction plus fraction numerator 1 over denominator 3.4 end fraction plus........... and deduce the sum to infinity.


The given series is:   space space fraction numerator 1 over denominator 1.2 end fraction plus fraction numerator 1 over denominator 2.3 end fraction plus fraction numerator 1 over denominator 3.4 end fraction plus.......

Let Tn be its nth term  straight T subscript straight n space equals space fraction numerator 1 over denominator left square bracket nth space term space of space 1 comma space 2 comma space 3 comma space........ right square bracket space left square bracket nth space term space of comma space 2 comma space 3 comma space 4 comma space.......... right square bracket end fraction

                                   equals space fraction numerator 1 over denominator left square bracket 1 plus left parenthesis straight n minus 1 right parenthesis 1 right square bracket space left square bracket 2 plus left parenthesis straight n minus 1 right parenthesis 1 right square bracket end fraction space equals space fraction numerator 1 over denominator straight n left parenthesis 2 plus straight n minus 1 right parenthesis end fraction space equals space fraction numerator 1 over denominator straight n left parenthesis straight n plus 1 right parenthesis end fraction

rightwards double arrow                        space space space space space straight T subscript straight n space equals space 1 over straight n minus fraction numerator 1 over denominator straight n plus 1 end fraction

Letspace space straight S subscript straight n be the sum of n terms of the series:

straight S subscript straight n space equals space sum from straight k equals 1 to straight n of straight T subscript straight k space equals space sum from straight k equals 1 to straight n of open parentheses 1 over straight k minus fraction numerator 1 over denominator straight k plus 1 end fraction close parentheses space equals space open parentheses 1 over 1 minus 1 half close parentheses plus open parentheses 1 half minus 1 third close parentheses plus open parentheses 1 third minus 1 fourth close parentheses plus.... plus open parentheses 1 over straight n minus fraction numerator 1 over denominator straight n plus 1 end fraction close parentheses space equals space 1 minus fraction numerator 1 over denominator straight n plus 1 end fraction 


                                                                                                                                  = fraction numerator straight n plus 1 minus 1 over denominator straight n plus 1 end fraction

rightwards double arrow             space space space straight S subscript straight n space equals space fraction numerator straight n over denominator straight n plus 1 end fraction

DEDUCTION:    straight S subscript straight n space equals space space fraction numerator begin display style straight n over straight n end style over denominator begin display style straight n over straight n end style plus begin display style 1 over straight n end style end fraction space equals space fraction numerator 1 over denominator 1 plus begin display style 1 over straight n end style end fraction comma space 1 over straight n  approach to zero as n approach to infinity

∴      straight S subscript infinity space equals space fraction numerator 1 over denominator 1 plus 0 end fraction space equals space 1

102 Views

Advertisement
127.

Sum of the series n . 1 + (n - 1). 2 + (n - 2) . 3 + ........ + 1. n

94 Views

 Multiple Choice QuestionsLong Answer Type

128. Show that the sum of the cubes of any number of consecutive integers is divisible by the sum of these integers.
154 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

129.

Show that fraction numerator 1 cross times 2 squared plus 2 cross times 3 squared plus...... plus straight n cross times left parenthesis straight n plus 1 right parenthesis squared over denominator 1 squared cross times 2 plus 2 squared cross times 3 plus...... plus straight n squared cross times left parenthesis straight n plus 1 right parenthesis end fraction space equals space fraction numerator 3 straight n plus 5 over denominator 3 straight n plus 1 end fraction

157 Views

130.

Find the sum to n terms of the following series:

52 + 62 + 72 + ....+ 202

137 Views

Advertisement