If a, b and c are in arithmetic progression, then the roots of th

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

211.

The sum of the series 1 + 12C1n + 13C2n + ... + 1n + 1Cnn is equal to

  • 2n + 1 - 1n + 1

  • 32n - 12n

  • 2n + 1n + 1

  • 2n + 12n


212.

The value of r = 21 + 2 + ... + r - 1r!

  • e

  • 2e

  • e2

  • 3e2


213.

The remainder obtained when 1! + 2! + ... + 95! is divided by 15 is

  • 14

  • 3

  • 1

  • 0


Advertisement

214.

If a, b and c are in arithmetic progression, then the roots of the equation ax - 2bx + c = 0 are

  • 1 and ca

  • - 1a and - c

  • - 1 and - ca

  • - 2 and - c2a


A.

1 and ca

Since, a, b and c are in AP.

 2b = a + c

Given, quadratic equation,

ax2 - 2bx + c = 0

    ax2 - a + cx + c = 0             2b = a + c    ax2 - ax - cx + c = 0 axx - 1 - cx - 1 = 0          x - 1ax - c = 0 x = 1, ca


Advertisement
Advertisement
215.

Let the coefficients of powers of x in the 2nd, 3rd and 4th terms in the expansion of (1 + x)n, where n is a positive integer, be in arithmetic progression. Then, the sum of the coefficients of odd powers of x in the expansion is

  • 32

  • 64

  • 128

  • 256


216.

The sum 1 x 1! + 2 x 2! + ... + 50 x 50! equals

  • 51!

  • 51! + 1

  • 51! + 1

  • × 51!


217.

Six numbers are in AP such that their sum is 3. The first term is 4 times the third term. Then, the fifth term is

  • - 15

  • - 3

  • 9

  • - 4


218.

The sum of the infinite series 1 +13 + 1 . 33 . 6 +1 . 3 . 53 . 6 . 9 + 1 . 3 . 5 . 73 . 6 . 9 . 12 + ... is equal to

  • 2

  • 3

  • 32

  • 13


Advertisement
219.

If 64, 27, 36 are the Pth Qth and Rth terms of a GP, then P + 2Q is equal to

  • R

  • 2R

  • 3R

  • 4R


220.

The coefficient of x10 in the expansion of 1 + (1 + x) + ... + (1 + x)20

  • C919

  • C1020

  • C1121

  • C1222


Advertisement