If S1, S2 and S3 are the sums of n, 2n and 3n terms of an arithme

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

271.

If H is the harmonic mean between P and Q, then the value of HP + HQ is

  • 2

  • PQP +Q

  • 12

  • P +QPQ


272.

The value of 23! + 45! + 67! + ...

  • e

  • 2e

  • e2

  • 1e


273.

If a1, a2, a3 ..., an are in AP, where ai > 0 for all i. Find the sum of series 1a1 + a2 + 1a2 + a3 + 1a3 + a4 + ... + 1an - 1 + an

  • n + 1a1 + an

  • n - 1a1 - an

  • n + 1a1 + an

  • n - 1a1 + an


Advertisement

274.

If S1, S2 and S3 are the sums of n, 2n and 3n terms of an arithmetic progression respectively, then

  • S2 = 3S3 - 2S1

  • S3 = 4(S1 + S2)

  • S3 = 3(S2 - S1)

  • S3 = 2(S2 + S1)


C.

S3 = 3(S2 - S1)

Let the first term and common difference of an AP be a and d respectively

   S1 = n22a + n - 1d       S2 = 2n22a + 2n - 1dand S3 = 3n22a + 3n - 1dNow,  S2 - S1 = n22a + 3n - 1d = S33 3S2 - S1 = S3


Advertisement
Advertisement
275.

C01 + C23 + C45 + C67 + ... is equal to

  • 2n - 1n - 1

  • 2n + 1n + 3

  • 2nn + 1

  • 2n - 2n


276.

Three numbers form an increasing GP. If the middle term is doubled, then the new numbers are in AP. The commonratio of the GP will be

  • 2 - 3

  • 2 ± 3

  • 32

  • 2 + 3


277.

If in an AP, 3rd term is 18 and 7th term is 30, the sum of its 17 terms is

  • 600

  • 612

  • 624

  • None of these


278.

The sum of the digitsin the unit place of all the numbers formed with the help of 3, 4, 5, 6 taken all at a time is

  • 432

  • 108

  • 36

  • 18


Advertisement
279.

If a, b, c are in HP, then the value of b +ab - a + b + cb - c is

  • 0

  • 1

  • 2

  • 3


280.

If the sides of a ABC are in AP and a is the smallest side, then cos(A) equals

  • 3c - 4b2c

  • 3c - 4b2b

  • 4c - 3b2c

  • 4c - 3b2b


Advertisement