If x < 1 and y = x - x22 + x33 - x44 + . . . , then x is equal to
y + y22 + y33 + . . .
y - y22 + y33 - y44 + . . .
y + y22! + y33! + . . .
y - y22! + y33! - y44! + . . .
If Sn = 13 + 23 + ... + n3 and Tn = 1 + 2 + ... + n, then
Sn = Tn3
Sn = Tn2
The sum of the series 34 . 8 - 3 . 54 . 8 . 12 + 3 . 5 . 74 . 8 . 12 . 16 - ...
32 - 34
23 - 34
32 - 14
23 - 14
12 - 12 . 22 + 13 . 23 - 14 . 24 + ... is equal to
14
loge34
loge32
loge23
C.
Given,12 - 12 . 22 + 13 . 23 - 14 . 24 + ...On Comparing withloge1 + x = x - x22! + x33 - x44 + ... ∞Put x = 12 on both sides, we get12 - 12 . 22 + 13 . 23 - 14 . 24 + ... = loge1 + 12 = loge32
For any integer n ≥ 1, the sum ∑k = 1nkk + 2 is equal to
nn + 1n + 26
nn + 12n + 16
nn + 12n + 76
nn + 12n + 96
If 1 + x + x2 + x35 = ∑k = 015akxk, then ∑a2k = 07k = 0
128
256
512
1024
If α = 52 ! 3 + 5 . 73 ! 32 + 5 . 7. 94! 33 + . . . , thenα2 + 4α is equal to
21
23
25
27
11 . 3 + 12 . 5 + 13 . 7 +14 . 9 + . . . = ?
2loge2 - 2
2 - loge2
2loge4
loge4
If l, m, n are in arithmetic progression, then the straight line b + my + n = 0 will pass through the point
(- 1, 2)
(1, - 2)
(1, 2)
(2, 1)
1e3xex + e5x = a0 + a1x + a2x2 + . . ⇒ 2a1 + 23a3 + 25a5 + . . . = ?
e
e - 1
1
0