If x1, x2, x3 as well as y1, y2, y3 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

341.

If a + bx - 3 = 127 + 13x + ... , then the ordered pair a, b = ?

  • (3, - 27)

  • 1, 13

  • (3, 9)

  • (3, - 9)


342.

The value of the sum 1 · 2 . 3 + 2 . 3 . 4 + 3 . 4 . 5 +  ... upto n terms is equal to

  • 16n22n2 + 1

  • 16n2 - 12n - 12n + 3

  • 18n2 + 1n2 +5

  • 14nn +1n + 2n + 3


343.

If a, b, c are distinct and the roots of (b - c)x2 + (c - a)x + (a - b) = 0 are equal, then a, b and c are in

  • anthmet1c progression

  • geometnc progression

  • harmonic progression

  • arithmetico-geometnc progression


344.

If the roots of x3 - kx2 + 14x - 8 = 0 are in geometric progression, then k is equal to

  • - 3

  • 7

  • 4

  • 0


Advertisement
345.

The number of four-digit numbers formed by using the digits 0, 2, 4, 5 and which are not divisible by 5, is

  • 10

  • 8

  • 6

  • 4


346.

If x = 15 + 1 . 35 . 10 + 1 . 3 . 55 . 10 . 5 +... ,3x2 + 6x = ?

  • 1

  • 2

  • 3

  • 4


347.

In ABC, a + b + cb + c - a = λbc, then

  • λ < - 6

  • λ > 6

  • 0 < λ <  4

  • λ > 4


348.

The greatest positive integer which divides (n + 16)(n + 17)(n + 18)(n +19), for all positive integers n, is

  • 6

  • 24

  • 28

  • 20


Advertisement
Advertisement

349.

If x1, x2, x3 as well as y1, y2, yare in geometric progression with the same common ratio,then the points, x1, y1, x2, y2, x3, y3 are

  • vertices of an equilateral triangle

  • vertices of a right angled triangle

  • vertices of a right angled isosceles triangle

  • collinear


D.

collinear

We have x1, x2, x3 and y1, y2, y3 are in GP with the same common ratio.

Let r be the common ratio.

 x1 = x1x2 = xr and x3 = xr2Similarly, y1 = yy2 = yr and y3 = yr2 Area of  = 12x1y11x2y21x3y31= 12xy1xryr1xr2yr21= 12xy111xryr1r2r21= 12xy111rr1r2r21 = 12 × 0 = 0  C1, C2 are identical The given points are collinear.


Advertisement
350.

If 124 + 2x2 = 2433x2 - 2, then x is equal to

  • ± 1312

  • ± 145

  • ± 1213

  • ± 514


Advertisement