Let n > 2 be an integer. Suppose that there are n Metro statio

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

361.

Let S be the sum of the first 9 term of the series :(x + ka} + (x2 + (k + 2)a} + {x3 + (k + 4)a} + {x4 + (k + 6)a} + ........ where a  0 and x  1. If S = x10 - x +45ax - 1x - 1, then k is equal to

  •  - 3

  • 1

  •  - 5

  • 3


362.

If the sum of first 11 terms of an A.P. , a1, a2, a3 ..... is 0(a1  0), then the sum of the A.P., a1, a3, a5, ..... a23 is ka1, where k is equal to :

  • 12110

  • - 12110

  • - 725

  • 725


Advertisement

363.

Let n > 2 be an integer. Suppose that there are n Metro stations in a city located around a circular path. Each pair of nearest stations is connected by a straight track only. Further, each pair of nearest station is connected by blue line, whereas all remaining pairs of stations are connected by red line. If number of red lines is 99 times the number of blue lines, then the value of n is

  • 199

  • 101

  • 201

  • 200


C.

201

Two consecutive stations = nTwo non consecutive stations = nC2  n nC2  n = 99n nn - 12 - n =99n n2 - n2 = 100n n2 = 201n   n = 201


Advertisement

 Multiple Choice QuestionsShort Answer Type

364.

If the variance of the terms in an increasing A.P. b1, b2, b3, ... , b11 is 90, then the common difference of this A.P. is


Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

365.

If T1, T2, T3 .... are in A.P. such thatT1 + T2 + ... + T25 = T28 +T27 + ... T40 and first term is 3 then value of common difference of A.P. is 

  • 12

  • 16

  • 2

  • 3


366.

S = 2 P01 - 3P12 + 4P23 + ... 51 terms + 1! +2! + 3! - 4! + ...51terms, find S

  • 1 + 51!

  • 1 + 52!

  • 1 + (50)51!

  • 1 + (51)51!


 Multiple Choice QuestionsShort Answer Type

367.

If m arithmetic means (A.Ms) and three geometric means (G.Ms) are inserted between 3 and 243 such that 4th A.M. is equal to 2nd G.M., then m is equal to :


 Multiple Choice QuestionsMultiple Choice Questions

368.

If 1 + 1 - 22 . 1 + 1 - 42 . 3 + 1 - 62 . 5 + ... + 1 - 202 . 19 = α - 220β thenan ordered pair α, β = ?

  • (11, 97)

  • (10, 103)

  • (11, 103)

  • (10, 97)


Advertisement
369.

Let  α and β be the roots of x2  3x + p = 0 and γ and δ be the roots of x2  6x + q = 0. If α, β, γ, δ  from a geometric progression. Then ratio (2q + p) : (2q  p) is

  • 3 : 1

  • 5 : 3

  • 9 : 7

  • 33 : 31


 Multiple Choice QuestionsShort Answer Type

370.

Let 2x2 + 3x + 410 = r = 020 arxr. Then a7a13 = ?


Advertisement