If the straight lines having direction cosines given by al + bm

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

81. If the lines fraction numerator straight x minus 1 over denominator negative 3 end fraction space equals space fraction numerator straight y minus 2 over denominator 2 straight k end fraction space equals space fraction numerator straight z minus 3 over denominator 2 end fraction space and space fraction numerator straight x minus 1 over denominator 3 straight k end fraction space equals space fraction numerator straight y minus 1 over denominator 1 end fraction space equals space fraction numerator straight z minus 6 over denominator negative 5 end fraction are prependicular, then find the value of k.
88 Views

82.

Show that the lines x = ay + b, z = cy + d and x = a' y + b' , z = c' y + d' are perpendicular to each other, if aa' + cc' + 1 = 0.

331 Views

83. If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (– 4, 3, –6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.
93 Views

 Multiple Choice QuestionsLong Answer Type

84. Find the equations of the line passing through the point P(–1, 3, –2) and perpendicular to the lines
straight x over 1 space equals space straight y over straight z space equals space straight z over 3 space space and space fraction numerator straight x plus 2 over denominator negative 3 end fraction space equals space fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z plus 1 over denominator 5 end fraction
105 Views

Advertisement
85. Find the vector equation of the line passing through the point (1, 2, – 4) and perpendicular to the two lines:
fraction numerator straight x minus 8 over denominator 3 end fraction space space equals space fraction numerator straight y plus 19 over denominator negative 16 end fraction space equals space fraction numerator straight z minus 10 over denominator 7 end fraction space and space fraction numerator straight x minus 15 over denominator 3 end fraction space equals space fraction numerator straight y minus 29 over denominator 8 end fraction space equals space fraction numerator straight z minus 5 over denominator negative 5 end fraction.
92 Views

86. Show that, if the axes are rectangular, then the equations of the line through (α, β, γ) right angles to the lines
straight x over straight l subscript 1 space equals space straight y over straight m subscript 1 space equals space straight z over straight n subscript 1 comma space space straight x over straight l subscript 2 space equals space straight y over straight m subscript 2 space equals space straight z over straight n subscript 2

are fraction numerator straight x minus straight alpha over denominator straight m subscript 1 space straight n subscript 2 minus straight m subscript 2 straight n subscript 1 end fraction space equals space fraction numerator straight y minus straight beta over denominator straight n subscript 1 straight l subscript 2 minus straight n subscript 2 straight l subscript 1 end fraction space equals fraction numerator straight z minus straight gamma over denominator straight l subscript 1 straight m subscript 2 minus straight l subscript 2 straight m subscript 1 end fraction.

82 Views

Advertisement

87. If the straight lines having direction cosines given by al + bm + cn = 0 and fmn + gnI + hIm = 0 are perpendicular, then show that straight f over straight a plus straight g over straight b plus straight h over straight c space equals space 0


Given that a I + b m + c n = 0,
i.e.                     straight n space equals fraction numerator negative left parenthesis al plus bm right parenthesis over denominator straight c end fraction                           ...(1)
Also,      straight f space straight m space straight n plus straight g space straight n space straight l plus straight h space straight l space straight m space equals space 0                           ...(2)
Substituting value of n from (1) in (2), we get
              fm open square brackets fraction numerator negative left parenthesis al plus bm right parenthesis over denominator straight c end fraction close square brackets space plus space straight g space straight l space open square brackets fraction numerator negative left parenthesis al space plus space bm right parenthesis over denominator straight c end fraction close square brackets space plus space straight h space straight l space straight m space equals space 0
or          straight a space straight f space straight m space straight l space plus straight b space straight f space straight m squared space plus space straight a space straight g space straight l squared space plus space straight b space straight g space straight l space straight m space minus space straight h space straight c space straight l space straight m space equals space 0
On dividing both sides by m2, we have
     straight a space straight g space open parentheses straight l over straight m close parentheses squared plus straight l over straight m left parenthesis straight a space straight f space plus space straight b space straight g space minus space straight c space straight h right parenthesis space plus space straight b space straight f space equals space 0
If l1, m1, n1 and l2, m2 , n2 are the direction cosines of the two lines, then the roots of the equation (3) as straight l subscript 1 over straight m subscript 1 space and space straight l subscript 2 over straight m subscript 2 space space give

fraction numerator straight l subscript 1 space straight l subscript 2 over denominator straight m subscript 1 space straight m subscript 2 end fraction space equals space fraction numerator straight b space straight f over denominator straight a space straight g end fraction space space space straight i. straight e. comma space space space space fraction numerator straight l subscript 1 space straight l subscript 2 over denominator begin display style straight f over straight a end style end fraction space equals space fraction numerator straight m subscript 1 space straight m subscript 2 over denominator begin display style straight g over straight b end style end fraction                                   ...(4)
Similarly, using (1) and (2) and by elimination of 1, we get
fraction numerator straight m subscript 1 space straight m subscript 2 over denominator begin display style straight g over straight b end style end fraction space equals space fraction numerator straight n subscript 1 space straight n subscript 2 over denominator begin display style straight h over straight c end style end fraction                                                           ...(5)
Combining (4) and (5), we have
                       fraction numerator straight l subscript 1 straight l subscript 2 over denominator begin display style straight f over straight a end style end fraction space equals space fraction numerator straight m subscript 1 space straight m subscript 2 over denominator begin display style straight g over straight b end style end fraction space equals space fraction numerator straight n subscript 1 space straight n subscript 2 over denominator begin display style straight h over straight c end style end fraction space equals space straight k space left parenthesis say right parenthesis

therefore space space space space straight l subscript 1 space straight l subscript 2 space equals space fraction numerator straight k space straight f over denominator straight a end fraction comma space space space space space straight m subscript 1 space straight m subscript 2 space equals space straight k space fraction numerator straight k space straight g over denominator straight b end fraction comma space space straight n subscript 1 straight n subscript 2 space equals space fraction numerator straight k space straight h over denominator straight c end fraction                 ...(6)
We know that the lines with direction cosines l1, m1, n1 and l2, m2, n2 are perpendicular if
l1 l2 + m1m2 + n1n2 = 0    ....(7)
From (6) and (7), we get,
straight k open parentheses straight f over straight a close parentheses plus straight k open parentheses straight g over straight b close parentheses space plus space straight k space open parentheses straight h over straight c close parentheses space equals space 0 space space space space or space space space space straight f over straight a plus straight g over straight b plus straight h over straight c space equals space 0
130 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

88. Find the coordinates of the foot of perpendicular drawn from the point A (1, 2, 1) to the line joining B (1, 4, 6) and (5, 4, 4). Also find the perpendicular distance of A from line BC.
89 Views

Advertisement
89. Find the co-ordinates of the foot of the perpendicular drawn from the point A(1, 8, 4) to the line joining the points B (0, –1, 3) and C (2, – 3, – 1).
86 Views

 Multiple Choice QuestionsLong Answer Type

90. Find the foot of perpendicular from the point (0, 2, 3) on the line
fraction numerator straight x plus 3 over denominator 5 end fraction space equals fraction numerator straight y minus 1 over denominator 2 end fraction space equals space fraction numerator straight z plus 4 over denominator 3 end fraction
90 Views

Advertisement