A plane meets the coordinate axes in A, B, C and (α, β, γ) is

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

171. Find the equation of the plane which is parallel to the x-axis and has intercepts 5 and 7 on the y and z-axis, respectively.
95 Views

172. Find the D.C.’s of the perpendicular from origin to the plane  straight r with rightwards arrow on top. space open parentheses negative 2 space straight i with hat on top space minus space 3 space straight j with hat on top space plus space 6 space straight k with hat on top close parentheses plus 14 space equals space 0.  Find also the distance of the plane from the origin. 
77 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

173. A plane meets the coordinate axes in A, B, C and (α, β, γ) is the centroid of the triangle ABC. Then, show that the equation of the plane is straight x over straight alpha plus straight y over straight beta plus straight z over straight gamma space equals space 3.


Let the equation of plane be
straight x over straight a plus straight y over straight b plus straight z over straight c space equals 1                                                 ...(1)
It meets x = axis in A where y = 0, z = 0
Putting y = 0, z = 0 in (1), we get,
straight x over straight a space equals 1 comma space space space space space space space space therefore space space straight x space equals straight a
∴  A is (a, 0, 0)
Similarly B, C are (0, b, 0), (0, 0, c) respectively.
∵ (α, β,γ) is centroid of ΔABC
therefore space space space space straight alpha space equals space fraction numerator straight a plus 0 plus 0 over denominator 3 end fraction comma space space space straight beta space equals fraction numerator 0 plus straight b plus 0 over denominator 3 end fraction comma space space straight gamma space equals space fraction numerator 0 plus 0 plus straight c over denominator 3 end fraction
therefore space space space straight alpha space equals space straight a over 3 comma space space straight beta space equals straight b over 3 comma space space straight gamma space equals space straight c over 3
therefore space space space straight a space equals space 3 space straight alpha comma space space straight b space equals space 3 space straight beta comma space space straight c space equals space 3 space straight gamma
Putting values of a, b, c in (1), we get,

      fraction numerator straight x over denominator 3 space straight alpha end fraction plus fraction numerator straight y over denominator 3 space straight beta end fraction plus fraction numerator straight z over denominator 3 space straight gamma end fraction space equals space 1

or   straight x over straight alpha plus straight y over straight beta plus straight z over straight gamma space equals space 3
which is required equation of plane.
82 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

174. A plane meets the co-ordinate axes at A, B, C such that the centroid of the triangle ABC is the point (1, – 2, 3). Show that the equation of the plane is 6x-3y + 2z= 18.
89 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

175. A plane meets the co-ordinate axes at A, B, C such that the centroid of triangle ABC is the point (a, b, c). Show that the equation of the plane is straight x over straight a plus straight y over straight b plus straight z over straight c equals 3.
91 Views

 Multiple Choice QuestionsShort Answer Type

176. Find the vector equation of the following planes in scalar product form:
straight r with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space straight lambda open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space plus space straight mu space open parentheses straight i with hat on top space minus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses
74 Views

177. Find the vector equation of the following planes in scalar product form:
straight r with rightwards arrow on top space equals space 2 space straight i with hat on top space minus space straight k with hat on top space plus space straight lambda space straight i with hat on top space plus space straight mu space open parentheses straight i with hat on top space minus space 2 space space straight j with hat on top space minus space straight k with hat on top close parentheses

75 Views

 Multiple Choice QuestionsLong Answer Type

178. Find the vector equation of the plane in scalar product form
straight r with rightwards arrow on top space equals space straight i with hat on top space minus space straight j with hat on top space plus space straight lambda space open parentheses straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top close parentheses space plus space straight mu space open parentheses 4 straight i with hat on top space minus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top close parentheses.

73 Views

Advertisement
179.

Find the vector equation in scalar product form of the plane that contains the lines.
                    straight r with rightwards arrow on top space equals space left parenthesis straight i with hat on top space plus space straight j with hat on top right parenthesis space plus space straight s space left parenthesis straight i with hat on top space plus 2 space straight j with hat on top space minus space straight k with hat on top right parenthesis
and               straight r with rightwards arrow on top space equals space open parentheses straight i with hat on top plus straight j with hat on top close parentheses plus straight t open parentheses negative straight i with hat on top space plus space straight j with hat on top space minus space 2 space straight k with hat on top close parentheses

80 Views

 Multiple Choice QuestionsShort Answer Type

180. Find the vector equation of the straight line passing through (1, 2, 3) and perpendicular to the plane straight r with rightwards arrow on top. space open parentheses straight i with hat on top space plus space 2 space straight j with hat on top space minus space 5 space straight k with hat on top close parentheses space plus space 9 space equals 0 space.
89 Views

Advertisement