The equation of straight line passing through the point (a, b, c)

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

641.

If cosα, cosβ, cosγ are the direction cosines of a vector a, then cos2α + cos2β + cos2γ is equal to

  • 2

  • 3

  • - 1

  • 0


642.

If a and b are unit vectors, then angle between a and b for 3a - b to be unit vectori

  • 45°

  • 60°

  • 90°

  • 30°


643.

The plane 2x - 3y + 6z - 11 = 0 makes an angle sin-1(α) with X-axis, the value of α is equal to

  • 23

  • 27

  • 32

  • 37


644.

The perpendicular distance of the point P(6, 7, 8) from XY-plane is

  • 6

  • 7

  • 5

  • 8


Advertisement
645.

Reflexion of the point α, β, γ in XY-plane is

  • 0, 0, γ

  • - α, - β, γ

  • α, β, - γ

  • α, β, 0


646.

The distance of the point (- 2, 4, - 5) from the line x + 33 = y - 45 = z + 86 is

  • 3710

  • 3710

  • 3710

  • 3710


Advertisement

647.

The equation of straight line passing through the point (a, b, c) and parallel to Z-axis, is

  • x - a1 = y - b1 = z - c0

  • x - a0 = y - b1 = z - c1

  • x - a1 = y - b0 = z - c0

  • x - a0 = y - b0 = z - c1


D.

x - a0 = y - b0 = z - c1

Since, DR's of a line parallel to Z-axis are (cos(90°), cos (90°), cos(0°)) i.e., (0, 0, 1).
 Equation of line passing through (a, b, c) and having DR's (0, 0, 1) is

x - a0 = y - b0 = z - c1


Advertisement
648.

If the equation of the locus of a point equidistant from the points (a1, b1) and (a2, b2) is (a1 - a2)r + (b1 - b2)y + c = 0, then the value of 'c' is

  • 12a22 + b22 - a12 - b12

  • a12 - a22 + b12 - b22

  • 12a12 + a22 + b12 + b22

  • a12 + b12 - a22 - b22


Advertisement
649.

A tetrahedron has vertices at 0(0, 0, 0), A(1, 2, 1), B(2, 1, 3) and C(- 1, 1, 2). Then, the angle between the faces OAB and ABC will be

  • cos-11935

  • cos-11731

  • 30°

  • 90°


650.

Distance between parallel planes 2x - 2y + z + 3 = 0 and 4x - 4y + 2z + 5 = 0, is

  • 12

  • 13

  • 14

  • 16


Advertisement