The shortest distance from the plane 12x + 4y + 3z = 327 to the s

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

651.

Given two vectors i^ - j^ and i^ + 2j^, the unit vector coplanar with the two vectors and perpendicular to first, is

  • 12i^ + j^

  • 152i^ + j^

  • ± 12i^ + j^

  • None of these


652.

If a and b are unit vectors and θ is the angle between them, then the value of cosθ2 is

  • 12a + b

  • 12a - b

  • a - ba + b

  • a + ba - b


653.

If aa21 + a3bb21 + b3cc21 + c3 and vectors (1, a, a2), (1, b, b2) and (1, c, c2) are non-coplanar, then the product abc equals

  • 2

  • - 1

  • 1

  • 0


654.

If the length of perpendicular drawn from origin on a plane is 7 unit and its direction ratios are - 3, 2 and 6, then that plane is

  • - 3x + 2y + 6z - 7 = 0

  • - 3x + 2y + 6z - 49 = 0

  • 3x - 2y + 6z + 7 = 0

  • - 3x + 2y - 6z - 49 = 0


Advertisement
Advertisement

655.

The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere x2 + y2 + z2 + 4x - 2y - 6z = 155,is

  • 26

  • 11413

  • 13

  • 39


A.

26

Given, equation of sphere isx2 + y2 + z2 + 4x - 2y - 6z - 155 = 0whose centre is (- 2, 1, 3)and radius = - 22 + 12 + 32 + 155                 = 4 + 1 + 9 + 155                 = 169 = 13 Required distance = distance of the plane from the centre of the sphere                = 12 × - 2 + 4 × 1 + 3 × 3 - 327122 + 42 × 32                = - 24 + 4 + 9 - 327144 + 16 + 9                = - 33813 = 33813 = 26


Advertisement
656.

The acute angle between the line joining the points (2, 1, - 3), (- 3, 1, 7)and a line parallel to x - 13 = y4 = z + 35, through the point (- 1, 0, 4), is

  • cos-17510

  • cos-1110

  • cos-13510

  • cos-11510


657.

Two systems ofrectangular axis have the same origin. If a plane cuts them at distances a, b, c and d', b', c' from the origin, then

  • 1a2 + 1b2 + 1c2 + 1a'2 + 1b'2 + 1c'2 = 0

  • 1a2 + 1b2 - 1c2 + 1a'2 + 1b'2 - 1c'2 = 0

  • 1a2 - 1b2 - 1c2 + 1a'2 - 1b'2 - 1c'2 = 0

  • 1a2 + 1b2 + 1c2 - 1a'2 - 1b'2 - 1c'2 = 0


658.

If a plane passes through the point (1, 1, 1) and is perpendicular to the line x - 13 = y - 10 = z - 14 then its perpendicular distance from the origin is

  • 34

  • 43

  • 75

  • 1


Advertisement
659.

The intersection of the spheres x2 + y2 + z2 + 7x - 2y - z = 13 and x2 + y2 + z2 - 3x + 3y + 4z = 8 is the same as the intersection of one of the sphere and the plane

  • x - y - z = 1

  • x - 2y - z = 1

  • x - y - 2z = 1

  • 2x - y - z = 1


660.

If θ is the angle between the vectors a = 2i^ + 2j^ - k^ and b = 6i^ - 3j^ + 2k^, then

  • cosθ = 421

  • cosθ = 319

  • cosθ = 219

  • cosθ = 521


Advertisement