221.
In the given Fig, O is a point in the interior of a triangle ABC, OD ⊥ BC,OE ⊥ AC and OF ⊥ AB. Show that
(i) OA2 + OB2 + OC2 - OD2 - OE2 - OF2 = AF2 + BD2 + CE2,
(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2.
Given : A triangle ABC, in which OD ⊥ BC, OE ⊥ AC and OF ⊥ AB.
To Prove:
(i) OA2 + OB2 + OC2 - OD2 - OE2 - OF2 = AF2 + BD2 + CE2
(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2
Const: Join O-B, O-C, and O-A.
Proof: In right triangle OFA, we have
OA2 = AF2 + OF2 ...(i)
[Using Pythagoras theorem]
In right triangle OBD, we have
OB2 = OD2 + BD2 ...(ii)
[Using Pythagoras theorem]
In right triangle OEC, we have
OC2 = OE2 + CE2 ...(iii)
[Using Pythagoras theorem]
Adding (i), (ii) and (iii), we get
OA2 + OB2 + OC2 = AF2 + OF2 + OD2 + BD2 + OE2 + CE2
⇒ OA2 + OB2 + OC2 = AF2 + BD2 + CE2 + OD2 + OF2 + OE2
⇒ AF2 + BD2 + CE2 = OA2 + OB2 + OC2 - OD2 - OF2 - OE2 Proved.
(ii) We can re-write the above proved result as follows:
AF2 + BD2 + CE2 = (OA2 - OE2) + (OB2 - OF2) + (OC2 - OD2)
= AE2 + CD2 + BF2
Hence, AF2 + BD2 + CE2 = AE2 + CD2 + BF2.
1753 Views