Prove that the equation cos(2x) + asin(x) = 2a - 7 possesses a so

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

671.

The number of solutions of 2sinx + cosx = 3

  • 1

  • 2

  • infinite

  • no solution


672.

Let tanα = aa + 1 and tanβ = 12a + 1, then α + β is

  • π4

  • π3

  • π2

  • 3π4


673.

If θ + ϕ = π4, then 1 + tanθ 1 + tanϕ is equal to

  • 1

  • 2

  • 5/2

  • 1/3


674.

If sinθ and cosθ are the roots of the equation ax2 - bx + c = 0, then a, b and c satisfy the relation

  • a2 + b2 + 2ac = 0

  • a2 - b2 + 2ac = 0

  • a2 + c2 + 2ab = 0

  • a2 - b2 - 2ac = 0


Advertisement
675.

If sinθ + cosθ = 0 and 0 < θ < π, then θ

  • 0

  • π4

  • π2

  • 3π4


676.

The value of cos15° - sin15° is

  • 0

  • 12

  • - 12

  • 122


677.

The period of the function f(x) = cos4x + tan3x is

  • π

  • π2

  • π3

  • π4


678.

If x + 1x = 2cosθ, then for any integer n, xn + 1xn is equal to

  • 2cos

  • 2sin

  • 2icos

  • 2isin


Advertisement

 Multiple Choice QuestionsShort Answer Type

Advertisement

679.

Prove that the equation cos(2x) + asin(x) = 2a - 7 possesses a solution if 2  a  6.


cos(2x) + asin(x) = 2a - 7

 1 - 2sin2x + asinx - 2a - 7 = 0              cos2x = 1 - 2sin2x

 2sin2x - asinx - 8 + 2a = 0It is quadratic in sin x, so by using quadratic formula, we get sinx = a ± a2 - 4 × 22a - 8 /4on solving, we get sinx = a - 42

To find the possible values of a we will use the following inequation as we know that value of sin x lies between -1 to 1.

      - 1  a - 4/2  1 - 2  a - 4  2      2  a  6

So for this range the solution of the trigonometric equation exists


Advertisement
680.

Find the values of x. - π < x < π, x  0 satisfying the equation,

g1 + cosx + cos2x + ...  = 43


Advertisement