At t = 0, the function f(t) = sintt has from Mathemati

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

721.

The principal amplitude of sin40° + icos40°5 is

  • 70°

  • - 110°

  • 110°

  • - 70°


722.

If the relation between direction ratios of two lines are given by a + b + c = 0 and 2ab + 2ac - bc = 0, then the angle between the lines is

  • π

  • 2π3

  • π2

  • π3


723.

The value of 2cos56°15' +isin56°15'8

 

  • - 16i

  • 16i

  • 8i

  • 4i


724.

If a = i^ - j^ + 2k^ and b = 2i^ - j^ +k^, then the angle θ between a and b is given by

  • tan-11

  • sin-112

  • sec-11

  • tan-113


Advertisement
Advertisement

725.

At t = 0, the function f(t) = sintt has

  • a minimum

  • a discontinuity

  • a point of inflexion

  • a maximum


D.

a maximum

Given, ft = sintt

At t = 0, first we will check continuity of the function

Now, LHL = f(0 - h)

              = limh0sin0 - h0 - h= limh0- sinh- h= 1

RHL= f0 + h= limh0sin0 + h0 + h= limh0sinhh= 1

and f(0) = 1

Since, LHL = RHL = f(0)

So, the function is continuous att = 0.

Now, we check the function is maximum or minimum

        f't = 1tcost - 1t2sintand f''(t) = - 1tsint - 1t2cost - 1t2cost + 2t3sint              = - sintt - 2costt2 + 2sintt3

For maximum or minimum value of f(x), put

                         f'(x) = 0 costt - sintt2 = 0                 tantt = 1

Now, limt0f''(t)= - limt0sintt - 2limt0tcost - sintt3           00 form= - 1 - 2limt0cost - tsint - cost3t2                 using L' Hospital rule= - 1 + 23limt0sintt= - 1 + 23 × 1 = - 13 < 0

So, function f(t) is maximum at t = 0.


Advertisement
726.

If r = 2r - 1Crm1m2 - 12mm + 1sin2m2sin2msin2m + 1, then the value of r = 0mr

  • 1

  • 0

  • 2

  • None of these


727.

If cosα + isinα, b = cosβ + isinβ, c = cosγ + isinγ and bc + ca + ab = 1, then cosβ - γ + cosγ - α + cosα - β is equal to

  • 32

  • 32

  • 0

  • 1


728.

The maximum value of 4 sin2(x) - 12sin(x) + 7 is

  • 25

  • 4

  • does not exist

  • None of the above


Advertisement
729.

A line making angles 45° and 60° with the positive directions of the axes of x and y makes with the positive direction of z-axis, an angle of

  • 60°

  • 120°

  • 60° or 120°

  • None of these


730.

If I = 1001, J = 01- 10 and B = cosθsinθ- sinθcosθ, then B is equal to

  • I cosθ + Jsinθ

  • I sinθ + Jcosθ

  • I cosθ - Jsinθ

  • - I cosθ + Jsinθ


Advertisement