The two curves y = 3 and y = 5 intersect at an angle from Mathem

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

731.

Find the value of sin12°sin48°sin54°.

  • 12

  • 14

  • 16

  • 18


732.

If 3sinθ + 5cosθ, then the value of 5sinθ - 3cosθ is equal to

  • 5

  • 3

  • 4

  • None of these


733.

Domain of the function f(x) = logx(cos(x)), is

  • - π2, π2 - 1

  • - π2, π2 - 1

  • - π2, π2

  • None of these


734.

If x = secθ - cosθ, y = secnθ - cosnθ, then x2 + 4dydx2 is equal to

  • n2(y2 - 4)

  • n2(4 - y2)

  • n2(y2 + 4)

  • None of these


Advertisement
Advertisement

735.

The two curves y = 3 and y = 5 intersect at an angle

  • tan-1log3 - log51 + log3log5

  • tan-1log3 + log51 - log3log5

  • tan-1log3 + log51 + log3log5

  • tan-1log3 - log51 - log3log5


A.

tan-1log3 - log51 + log3log5

Given curves y = 3x      ...(i)

and              y = 5x      ...(ii)

Intersect at the point (0, 1).

Now, differentiating Eqs. (i) and (ii) w.r.t. x, we get

dydx = 3xlog3 and dydx = 5xlog5 dydx0, 1 = log3 and dydx0, 1 = log5 m1 = log3 and m2 = log5Angle between these curves is given by     tanθ = m1 - m21 + m1m2 tanθ = log3 - log51 + log3 . log5       θ = tan-1log3 - log51 + log3 . log5


Advertisement
736.

The period of sin4x + cos4x is

  • π42

  • π22

  • π4

  • π2


737.

If 3 cos x 2 sin x, then the general solution of sin2x - cos2x = 2 - sin2x is

  •  + - 1nπ2, n  Z

  • 2, n  Z

  • 4n ± 1π2, n  Z

  • (2n - 1)π, n  Z


738.

If cosx + cos2x = 1, then the value of sin12x + 3sin10x + 3sin8x + sin6x - 1, is equal to :

  • 2

  • 1

  • - 1

  • 0


Advertisement
739.

The product of all values of cosα + isinα3/5 is :

  • 1

  • cosα + isinα

  • cos3α + isin3α

  • cos5α + isin5α


740.

1 + cosπ81 + cos3π81 + cos5π81 + cos7π8 is equal to

  • 12

  • 18

  • cosπ8

  • 14


Advertisement