A man is standing on the horizontal plane. The angle of elevation

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

771.

A man is standing on the horizontal plane. The angle of elevation of top of the pole is α. If he walks a distance double the height of the pole, then the elevation of the pole is 2α. The value of α is

  • π12

  • π4

  • π3

  • π6


A.

π12

Let the height of the pole be BC = h m.

In ABC,tan2α = hx            ...i

and in DBC,      tanα = h2h+ x tanα = hx2hx + 1 tanα = tan2α2tan2α + 1        tanα2tan2α + 1 = tan2α tanα2 × 2tanα1 - tan2α = 2tanα1 - tan2α  4tanα + 1 - tan2α = 2     tan2α - 4tanα + 1 = 0    tanα = + 4 ± 16 - 42 × 1                  = 4 ± 122 = 4 ± 232   tanα = 2 ± 3

Taking '-' sign, we get tanα = 2 - 3 tanα = tan15°        α = 15° or π12


Advertisement
772.

The value of sin(50°) cos (10°) + cos(50°) sin(10°) is

  • 12

  • 3

  • 32

  • 1


773.

The least value of a, for which the function a 4sinx + 11 - sinx has at east one solution in the interval 0, π2, is

  • 9

  • 4

  • 5

  • 1


774.

In ABC, if 3a = b + c, then value of cotB2cotC2 will be

  • 1

  • 2

  • 3

  • 2


Advertisement
775.

If sin(a) and cos(a) are the roots of the equation ax2 + bx + c = 0, then

  • a2 - b2 + 2ac = 0

  • (a - c)2 = b2 + c2

  • a2 + b2 - 2ac = 0

  • a2 + b2 + 2ac = 0


776.

In ABC, if cot(A), cot(B) and cot(C) are in AP, then a2, b2 and c2 are in

  • HP

  • AP

  • GP

  • None of the above


777.

The maximum value of 3cosθ + 4sinθ is

  • 3

  • 4

  • 5

  • None of these


778.

The period of sinθ - 3cosθ is

  • π4

  • π2

  • π

  • 2π


Advertisement
779.

If cosθ = cos2α + cos2β + cos2γsin2α + sin2β + sinγ, where α, β, γ are the angles made by a line with the positive directions of the axes of reference, then the measure of θ is

  • 60°

  • 90°

  • 30°

  • 45°


780.

If a = 2, b = 3 and c = 5in BC, then C is to equal

  • π2

  • π4

  • π6

  • None of these


Advertisement