If θ Lies in the first quadra

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

851.

The transformed equation of x2 + 6xy + 8y2 = 10 when the axes are rotated through an angle π4is :

  • 15x2 - 14xy + 3y= 20

  • 15x2 + 14xy - 3y= 20

  • 15x2 + 14xy + 3y= 20

  • 15x2 - 14xy - 3y= 20


Advertisement

852.

If θ Lies in the first quadrant and 5tanθ = 4,then 5sinθ - 3cosθ5sinθ- 3cosθ = ?

  • 514

  • 314

  • 114

  • 0


A.

514

Given that θ lies in the first quadrantand 5tanθ = 4 tanθ = 45 sinθ =441, cosθ =541Now,5sinθ - 3cosθsinθ +2cosθ = 5 × 441 - 3 × 541441 + 2 × 541                                   = 20 - 154 + 10                                   = 514


Advertisement
853.

tan80° - tan10°tan70° = ?

  • 0

  • 1

  • 2

  • 3


854.

sinA + sinB = 3cosB - cosA sin3A + sin3B = ?

  • 0

  • 2

  • 1

  • - 1


Advertisement
855.

sech - 1sinθ = ?

  • logtanθ2

  • logsinθ2

  • logcosθ2

  • logcotθ2


856.

If two angles of  ABC are 45° and 60°, then the ratio of the smallest and the greatest sides are

  • 3 - 1 : 1

  • 3  : 2

  • 1 : 3

  • 3 : 1


857.

In  ABC,  a +b+ ctanA2 + tanB2 is equal to

  • 2ccotA2

  • 2acotA2

  • 2bcotB2

  • tanC2


858.

In ABC, with usual notation, observe the two statements given below :

I rr1r2r3 = 2II r1r2  + r2r3 + r3r1 = s2Which of the following is correct ? 

  • Both I and II are true

  • I is true, II is false

  • I is false, II is true

  • Both I and II are false


Advertisement
859.

3csc20° - sec20° is equal to

  • 2

  • 2sin20° - csc40°

  • 4

  • 4sin20° . csc40°


860.

If A = 35°, B = 15° and C = 40°, then tan(A) · tan(B) + tan(B) . tan(C) + tan(C) . tan(A) is equal to

  • 0

  • 1

  • 2

  • 3


Advertisement