271.
Find the area of the triangle formed by the points A (1, 1, 1), B (1, 2, 3) and C (2, 3, 1) with reference to a rectangular system of axes.
The given vertices are A (1, 1, 1), B (1, 2. 3) and C (2, 3, 1).
 LetÂ
 be the position vectors of A, B, C respectively.
![therefore space space space straight a with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space plus space straight k with hat on top comma space space space space straight b with rightwards arrow on top space equals space straight i with hat on top space plus space 2 space straight j with hat on top space plus space 3 space straight k with hat on top comma space space straight c with rightwards arrow on top space equals space 2 space straight i with hat on top space plus space 3 space straight j with hat on top space plus space straight k with hat on top](/application/zrc/images/qvar/MAEN12067307-1.png)
Now, Â Â Â Â ![BC with rightwards arrow on top space equals space straight P. straight V. space of space straight C space minus space straight P. straight V. space of space straight B space equals space straight c with rightwards arrow on top space minus space straight b with rightwards arrow on top space equals space straight i with hat on top space plus space straight j with hat on top space minus 2 space straight k with hat on top](/application/zrc/images/qvar/MAEN12067307-2.png)
        ![BA with rightwards arrow on top space equals space straight P. straight V. space of space straight A space minus space straight P. straight V. space of space straight B space equals space straight a with rightwards arrow on top space space minus straight b with rightwards arrow on top space equals space minus straight j with hat on top space minus space 2 space straight k with hat on top](/application/zrc/images/qvar/MAEN12067307-3.png)
   Â
75 Views