Find the vector equation of the plane which contains the line of

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

321.

Find the coordinates of the point, where the line fraction numerator straight x minus 2 over denominator 3 end fraction equals fraction numerator straight y plus 1 over denominator 4 end fraction equals fraction numerator straight z minus 2 over denominator 2 end fraction intersects the plane straight x minus straight y plus straight z minus 5 space equals space 0. Also find the angle between the line and the plane. 

154 Views

Advertisement

322.

Find the vector equation of the plane which contains the line of intersection of the planes. straight r with rightwards arrow on top. open parentheses straight i with hat on top plus 2 straight j with hat on top plus 3 straight k with hat on top close parentheses minus 4 space equals 0 and straight r with rightwards arrow on top. open parentheses 2 straight i with hat on top plus straight j with hat on top minus straight k with hat on top close parentheses plus 5 space equals 0 and which is perpendicular to the plane straight r with rightwards arrow on top. space open parentheses 5 straight i with hat on top plus 3 straight j with hat on top minus 6 straight k with hat on top close parentheses plus 8 space equals space 0


The equation of the given planes are
straight r with rightwards arrow on top. open parentheses straight i with hat on top plus 2 straight j plus 3 straight k with hat on top close parentheses minus 4 space equals space 0 space space... left parenthesis 1 right parenthesis
straight r with rightwards arrow on top. left parenthesis 2 straight i with hat on top plus straight j with hat on top minus straight k with hat on top right parenthesis plus 5 space equals space 0 space space space... left parenthesis 2 right parenthesis
The equation of the plane passing through the intersection of the planes (1) and (2) is
open square brackets straight r with rightwards arrow on top. open parentheses straight i with hat on top plus 2 straight j with hat on top plus 3 straight k with hat on top close parentheses minus 4 close square brackets plus straight lambda open square brackets straight r with rightwards arrow on top. open parentheses 2 straight i with hat on top plus straight j with hat on top minus straight k with hat on top close parentheses plus 5 close square brackets equals 0
space space rightwards double arrow space space straight r with rightwards arrow on top open square brackets open parentheses 1 plus 2 straight lambda close parentheses straight i with hat on top plus left parenthesis 2 plus straight lambda right parenthesis straight j with hat on top plus left parenthesis 3 minus straight lambda right parenthesis straight k with hat on top close square brackets space equals space 4 minus 5 straight lambda space space space... left parenthesis 3 right parenthesis
Given that plane (3) is perpendicular to the plane straight r with rightwards arrow on top. open parentheses 5 straight i with hat on top plus 3 straight j with hat on top minus 6 straight k with hat on top close parentheses plus 8 space equals space 0
open parentheses 1 plus 2 straight lambda close parentheses cross times 5 plus left parenthesis 2 plus straight lambda right parenthesis cross times 3 plus left parenthesis 3 minus straight lambda right parenthesis cross times left parenthesis negative 6 right parenthesis space equals space 0
rightwards double arrow space space 19 straight lambda minus 7 space equals space 0
rightwards double arrow space space space straight lambda space equals space 7 over 19
Putting space straight lambda space equals space 7 over 19 space in space left parenthesis 3 right parenthesis comma space we space get

straight r with rightwards arrow on top open square brackets open parentheses 1 plus 14 over 19 close parentheses straight i with hat on top plus open parentheses 2 plus 7 over 19 close parentheses straight j with hat on top plus open parentheses 3 minus 7 over 19 close parentheses straight k with hat on top close square brackets space equals space 4 minus 35 over 19
rightwards double arrow space space straight r with rightwards arrow on top. open parentheses 33 over 19 straight i with hat on top plus 45 over 19 straight j with hat on top plus 50 over 19 straight k with hat on top close parentheses space equals space 41 over 19
rightwards double arrow space space straight r with rightwards arrow on top. open parentheses 33 straight i with hat on top plus 45 straight j with hat on top plus 50 straight k with hat on top close parentheses space equals space 41
This is the equation of the required line. 

153 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

323.

Find the vector equation of the plane passing through three points with position vectors straight i with hat on top plus straight j with hat on top minus 2 straight k with hat on top comma space 2 straight i with hat on top minus straight j with hat on top plus straight k with hat on top space and space straight i with hat on top plus 2 straight j with hat on top plus straight k with hat on top. Also, find the coordinates of the point of intersection of this plane and the line straight r with rightwards arrow on top space equals 3 straight i with hat on top minus straight j with hat on top minus straight k with hat on top plus straight lambda open parentheses 2 straight i with hat on top minus 2 straight j with hat on top plus straight k with hat on top close parentheses.

150 Views

324.

If straight a with rightwards arrow on top comma straight b with rightwards arrow on top comma space and space straight c with rightwards arrow on top are mutually perpendicular vectors of equal magnitudes, show that the vector stack straight a space with rightwards arrow on top space plus straight b with rightwards arrow on top space plus straight c with rightwards arrow on top is equally straight a with rightwards arrow on top comma straight b with rightwards arrow on top comma space and space straight c with rightwards arrow on top inclined to Also, find the angle which stack straight a space with rightwards arrow on top space plus straight b with rightwards arrow on top space plus straight c with rightwards arrow on top with straight a with rightwards arrow on top comma space straight b with rightwards arrow on top space or space straight c with rightwards arrow on top.

1088 Views

Advertisement
325. Let space straight a with rightwards arrow on top space equals space straight i with hat on top space plus straight j with hat on top space plus stack straight k comma with hat on top space
straight b with rightwards arrow on top space equals space straight i with hat on top space and
straight c with rightwards arrow on top space equals space straight c subscript 1 straight i with hat on top space plus straight c subscript 2 straight j with hat on top space plus straight c subscript 3 straight k with hat on top space space then
a) Let c1 = 1 and c2 = 2, find c3 which makes straight a with rightwards arrow on top space comma straight b with rightwards arrow on top space and space straight c with rightwards arrow on top coplanar.
b) If c2 = –1 and c3 = 1, show that no value of c1 can make straight a with rightwards arrow on top space comma straight b with rightwards arrow on top space and space straight c with rightwards arrow on top coplanar.
1435 Views

 Multiple Choice QuestionsShort Answer Type

326.

Find the magnitude of each of the two vectors a and b, having the same magnitude such that the angle between them is 60o and their scalar product is 9/2.


327.

If θ is the angle between two vectors i^ - 2j^ + 3k^ and 3i^ - 2j^ + k^ find sin θ.


328.

Let a = 4i^ + 5j^ - k^ , b = i^ - 4j^ + 5k^ and c = 3i^ + j^- k^. Find a vector d which perpendicular to both  c and b and d. a = 21


Advertisement
329.

Find a unit vector in the direction of  a = 3i ^ - 2j^ + 6k


330.

Find the angle between the vectors a = i^ - j^ + k^    and   b = 1^ + j^ - k^ 


Advertisement