The volume of the parallelopiped whose coterminus edges are 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

481.

An unit vector perpendicular to both i^ + j^ and j^ + k^ is :

  • i^ - j^ + k^

  • i^ + j^ + k^

  • i^ + j^ - k^3

  • i^ - j^ + k^3


482.

The area of the triangle whose vertices are (1, 2, 3), (2, 5, -1) and (-1, 1, 2) is :

  • 150 sq unit

  • 145 sq unit

  • 1552 sq unit

  • 1552 sq unit


483.

For any three vectors a, b, ca × b × c + b × c + a + c × a + b is :

  • 0

  • a + b + c

  • a . b × c

  • a × b . c


484.

If a, b, c are any three vectors, then a + b b + c c + a is equal to

  • a b  c

  • 0

  • 2a b c

  • a b c2


Advertisement
Advertisement

485.

The volume of the parallelopiped whose coterminus edges are i^ - j^ + k^, 2i^ - 4j^ + 5k^ and 3i^ - 5j^ + 2k^ is :

  • 4 cu unit

  • 3 cu unit

  • 2 cu unit

  • 8 cu unit


D.

8 cu unit

Required volume = 1- 112- 453- 52= 1- 8 + 25 + 14 - 15 + 1- 10 + 12= 17 - 11 + 2 = 8 cu unit


Advertisement
486.

For any vector a, i^ × a × i^ + j^ × a × j^ + k^ × a × k^ is equal to:

  • 0

  • a

  • 2a

  • 3a


487.

If the vectors 3i^ + λj^ + k^ and 2i^ - j^ + 8k^ are perpendicular, then λ is :

  • - 14

  • 7

  • 14

  • 17


488.

The projection of the vector i^ + j^ + k^ along the vector j^ is:

  • 1

  • 0

  • 2

  • - 1


Advertisement
489.

The projection of i^ + 3j^ + k^ on 2i^ - 3j^ + 6k^ is :

  • 1/7

  • - 1/7

  • 7

  • - 7


490.

If a × b = 0 and a . b = 0, then :

  • a  b

  • a  b

  • a = 0 and b = 0

  • a = 0 or b = 0


Advertisement