The parabolas y2 = 4x and x2 = 4y divide the square region bound

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

21.

The solution for x of the equation integral subscript square root of 2 end subscript superscript straight x fraction numerator dt over denominator straight t square root of straight t squared minus 1 end root end fraction space equals straight pi over 2 space is

  • 2

  • π

  • square root of 3 divided by 2
  • square root of 3 divided by 2
121 Views

22. integral fraction numerator dx over denominator cos space straight x space plus space square root of 3 space sin space straight x end fraction equals
  • 1 half space log space tan space open parentheses straight x over 2 plus straight pi over 12 close parentheses space plus straight C
  • 1 half space log space tan space open parentheses straight x over 2 minus straight pi over 12 close parentheses plus straight c
  • log space tan space open parentheses straight x over 2 minus straight pi over 12 close parentheses plus straight c
  • log space tan space open parentheses straight x over 2 minus straight pi over 12 close parentheses plus straight c
137 Views

23.

The area enclosed between the curves y2 = x and y = |x| is

  • 2/3

  • 1/3

  • 1/6

  • 1/6

127 Views

24.

The area enclosed between the curve y = loge (x + e) and the coordinate axes is

  • 1

  • 2

  • 3

  • 3

258 Views

Advertisement
Advertisement

25.

The parabolas y2 = 4x and x2 = 4y divide the square region bounded by the lines x = 4, y = 4 and the coordinate axes. If S1, S2, S3 are respectively the areas of these parts numbered from top to bottom; then S1 : S2: S3 is

  • 1 : 2 : 1

  • 1 : 2 : 3

  • 2 : 1 : 2

  • 2 : 1 : 2


D.

2 : 1 : 2

y2 = 4x and x2 = 4y are symmetric about line y = x

space straight y space equals straight x space is space integral subscript 0 superscript 4 space left parenthesis 2 space square root of straight x minus space straight x right parenthesis space dx space equals space 8 over 3
rightwards double arrow space straight A subscript straight s subscript 2 end subscript space equals space 16 over 3 space and space straight A subscript straight s subscript 1 end subscript space equals space straight A subscript straight s subscript 3 end subscript space equals space 16 over 3
rightwards double arrow space straight A subscript straight s subscript 1 end subscript colon space straight A subscript straight s subscript 2 end subscript space colon space straight A subscript straight s subscript 3 end subscript space colon colon space 1 colon 1 colon 1

243 Views

Advertisement
26. limit as straight n rightwards arrow infinity of space sum from straight r equals 1 to straight n of space 1 over straight n straight e to the power of straight r over straight n end exponent space is space
  • e

  • e+1

  • e-1
  • e-1
134 Views

27.

The area of the region bounded by the curves y = |x – 2|, x = 1, x = 3 and the x-axis is

  • 1

  • 2

  • 3

  • 3

124 Views

28.

Let g(x) = cos x2, f(x) = x and α, β (α <β) be the roots of the quadrtic equation 18x2 - 9πx + π2 = 0. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines x = α, x = β and y = 0 is

  • 12(2-1)

  • 12(3-1)

  • 12(3+1)

  • 12(3-2)


Advertisement
29.

If sum of all the solutions of the equation 8 cos x. cos π6+x.cosπ6-x-12 = 1 in [0,π] is kπ, then k is equal to:

  • 20/9

  • 2/3

  • 13/9

  • 8/9


30.

The area enclosed by y = 5 - x2 and y = x - 1 is

  • 5π4 - 2 sq. units

  • 5π - 22 sq. units

  • 5π4 - 12 sq. units

  • π2 - 5 sq. units


Advertisement