If Cr - 1n = 36, Crn = 84

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

51.

If X is a binomial variate with the range {0, 1, 2, 3, 4, 5, 6} and P(X = 2) = 4P(X = 4), then the parameter p of X is

  • 13

  • 12

  • 23

  • 34


52.

The number of integral solutions of x1 + x2 + x3 = 0, with x - 5, is :

  • C215

  • C216

  • C217

  • C218


Advertisement

53.

If Cr - 1n = 36, Crn = 84 and  Cr + 1n = 126, then n is equal to

  • 8

  • 9

  • 10

  • 11


B.

9

Given, Cr - 1n = 36, Crn = 84and  Cr + 1n = 126    n!n - r + 1!r - 1! = 36                          n!n - r!r! = 84and   n!n - r - 1!r + 1! = 126Now, n - r!r!n - r + 1!r - 1! = 3684                  rn - r + 1 = 37                10r - 3n - 3 = 0and   n - r - 1!r + 1!n - r!r! = 84126                        r + 1n - 3 = 23                 5r - 2n + 3 = 0On solving Eqs. (i) and (ii), we get                            r = 3, n = 9


Advertisement
54.

Coefficient of xn in the expansion of 1 + a + bx1! + a + bx22! + a + bx33! + ...

  • ea . bnn!

  • b . ann

  • eb . bnn - 1!

  • an . bn - 1n!


Advertisement
55.

The value of C1 - 2 . C2 + 3 . C3 - 4 . C4 + ... where CrCrn will be

  • - 1

  • 1

  • 0

  • None of these


56.

The middle term in the expansion of ba5 - 5ab12 is

  • C612ba3

  • - C612ba3

  • C712ba5

  • - C712b5a


57.

The coefficient of x4 in the expansion of (1 + x + x2 + x3)11 is

  • 990

  • 605

  • 810

  • None of these


58.

The coefficient of x4 in the expansion of log (1 + 3x + 2x2) is

  • 163

  • - 163

  • 174

  • - 174


Advertisement
59.

If m = C2n, then C2m is equal to

  • n + C41

  • 3 × C4n

  • 3 × C4n + 1

  • None of these


60.

The largest term in the expansion of (3 + 2x)50 where x = 15, is

  • 7th

  • 5th

  • 8th

  • 49th


Advertisement