If the coefficients of rth and (r + 1)th terms in the expansion o

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

81.

If x is numerically so small so that x and higher powers of x can be neglected, then 1 + 2x33232 +5x- 15 is approximately equal to

  • 32 + 31x64

  • 31 + 32x64

  • 31 - 32x64

  • 1 - 2 x64


82.

For x < 1, the constant term in the expansion of 1x - 12x - 2 is

  • 2

  • 1

  • 0

  • - 12


83.

The numbers an = 6n - 5n for n = 1, 2, 3, . . . when divided by 25 leave the remainder

  • 9

  • 7

  • 3

  • 1


84.

For x < 15, the coefficient of x3 in the expansion of 11 - 5x1 - 4x  is

  • 369

  • 370

  • 371

  • 372


Advertisement
Advertisement

85.

If the coefficients of rth and (r + 1)th terms in the expansion of (3 + 7x)29 are equal, then r is equal to

  • 14

  • 15

  • 18

  • 21


D.

21

Coefficient of rth term  =  Coefficient of r + 1th term Cr - 129329 - r + 17r - 1 = Cr29329 - r 7r Cr - 129 37 = Cr29 29!r - 1!29 - r + 1! × 37 = 29!29 - r! r! 3729 - r + 1 = 1r 3r = 203 - 7r + 7 10r = 210 r = 21


Advertisement
86.

If ab  0 and the sum of the coefficients of x7and x4 in the expansion of x2a - bx11 is 0, then

  • a = b

  • a + b = 0

  • ab = - 1

  • ab = 1


87.

Suppose X follows a binomial distribution with parameters n and p, where 0 < p < 1. If PX = rPX = n - r is independent of n for every r, then p is equal to

  • 12

  • 13

  • 14

  • 18


88.

A fair coin is tossed 100 times. The probability of getting tails an odd number of times is

  • 12

  • 14

  • 18

  • 38


Advertisement
89.

The value of x  R  loglog1.61 - x2 - 0.62561 + x  R is

  • - , - 1  7, 0

  • (- 1, 5)

  • (1, 7)

  • (- 1, 7)


90.

12 . 3 + 14 . 5 + 16 . 7 + 18 . 9 + ...  = ?

  • log2e

  • loge2

  • log2e

  • e - 1


Advertisement