The roots of the quadratic equation 2x2 + 3x + 1 = 0 are
rational
irrational
imaginary
None of these
Roots of equation x3 - 6x + 1 = 0 lie in the interval
(2, 3)
(3, 4)
(3, 5)
(4, 6)
A.
(2, 3)
Here, we see that f(2) and f(3) have opposite signs, so one of the roots lies in (2, 3).
If where A and B are real numbers, then A and Bare equal to
A = - 4, B = 2
A = 2, B = - 4
A = 2, B = 4
None of these
If 1, w and w2 are the cube roots of unity, then the value of (1 - w + w2)(1 + w - w2) is equal to
4
0
2
3
The quadratic equation whose roots are , will be
7x2 - 6x + 1 = 0
6x2 - 7x + 1 = 0
x2 - 6x + 7 = 0
x2 - 7x + 6 = 0