If α, β, γ are the 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

271.

The number of real roots of the equation x5 +3x3 + 4x + 30 = 0 is

  • 1

  • 2

  • 3

  • 5


272.

If the coefficients of the equation whose roots are k times the roots of the equation x3 + 14x2 - 116x + 1144 = 0, are integers, then a possible value of k is

  • 3

  • 12

  • 9

  • 4


273.

If the coordinate axes are rotated through an angle π6 about the origin, then the transformed equation of 3x2 - 4xy + 3y2 = 0 is

  • 3y2 + xy = 0

  • x2 - y2 = 0

  • 3y2 - xy = 0


274.

The harmonic conjugate of (2, 3, 4) with respect to the points (3, - 2, 2), (6, - 17, - 4) is

  • 12, 13, 14

  • 185, - 5, 45

  • - 185, 54, 45

  • 185, - 5, - 45


Advertisement
275.

The harmonic mean of two numbers is - 85 and their geometric mean is 2. The quadratic equation whose roots are twice those numbers is

  • x2 + 5x + 4 = 0

  • x2 + 10x + 16 = 0

  • x2 - 10x + 16 = 0

  • x2 - 5x + 4 = 0


276.

If z is a complex number with z  5. Then the least value of z + 2z is

  • 245

  • 265

  • 235

  • 295


277.

If α  is  a  non-real  root  of  x7 = 1,  then α(1 + α) (1 + α2 + α4) =

  • 1

  • 2

  • - 1

  • - 2


278.

If ω is a complex root of unity, then for anyn > 1, r = 1n - 1rr  + 1 - ωr +1 - ω2 = 

  • n2n + 124

  • nn +12n +16

  • nn - 14n2 + 3n +4

  • nn +12n + 14


Advertisement
Advertisement

279.

If α, β, γ are the roots of x3 + px2 + qx +r = 0then the value of 1 + α21 + β21 + γ2 is

  • r - p2 + r - q2

  • 1 + p2 + 1 + q2

  • r+ p2 + q + 12

  • r - p2 + q - 12


D.

r - p2 + q - 12

d Since, α, β, and γ are roots of given equationsthereforeα + β + γ = - p       iαβ + βγ + γα = q     iiand αβγ = - r           iiiNow, consider  1 + α21 + β21 + γ2= 1 + α21 + β2 + γ2 + βγ2= 1 + β2 + γ2 + βγ2 + α2 + αβ2 + αγ2 + αβγ2= 1 + α2 + β2 + γ2 + αβ2 + βγ2 + γα2 + αβγ2= 1 + α + β + γ2 - 2αβ + βγ + γα + αβ + βγ + γα2 - 2αβγα + β + γ  + αβγ2= 1 + p2 - 2q + q2 - 2rp + r2= 1 + p2 - 2q +q2 - 2rp + r2= q - 12 +r - p2


Advertisement
280.

Let α and β be the roots of the equation, 5x2 + 6x  2 = 0. If Sn = αn+ βn, n = 1, 2, 3,..., then :

  • 6S6 +5S5 = 2S4

  • 5S6 +6S5 = 2S4

  • 5S6 +6S5 +2S4 = 0 

  • 6S6 + 5S5 +2S4 = 0


Advertisement