Important Questions of Conic Section Mathematics | Zigya

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement
391.

If x2 + y2 - 4x - 2y +5 = 0 and x2 +y2 - 6x - 4y - 3 = 0 are members of a coaxial system of circles,then the centre of a circle in the system is

  • ( - 5, - 6)

  • (5, 6)

  • (3, 5)

  • ( - 8, - 13)


392.

Equation of the locus of the centroid of the triangle whose vertices are (acos(k), asin(k)), [bsin(k), - bcos(k)) and (1, 0), where k is a parameter, is

  • 1 - 3x2 + 9y2 = a2 + b2

  • 3x - 12 + 9y2 = 2a2 + 2b2 

  • 3x + 12 + 3y2 = 3a2 + 3b2

  • 3x +12 + 3y2 = 3a2 + 3b2


393.

A circle S = 0 with radius 2 touches the line x + y - z = 0 at(1, 1). Then, the length of the tangent drawn from the point(1, 2) to S = 0 is

  • 1

  • 2

  • 3

  • 2


394.

The normal drawn at P(- 1, 2) on the circle x2 + y2 - 2x - 2y - 3 = 0 meets the circle at another point Q. Then the coordinates of Q are

  • (3, 0)

  • ( - 3, 0)

  • (2, 0)

  • ( - 2, 0)


Advertisement
395.

If the lines kx + 2y - 4 = 0 and 5x - 2y - 4 = 0 are conjugate with respect to the circle x2 + y2 - 2x - 2y - 1 = 0, then k is equal to

  • 0

  • 1

  • 2

  • 3


396.

The angle between the, tangents drawn from the origin to the circle x2 + y2 + 4x - 6y + 4 = 0 is

  • tan-1513

  • tan-1512

  • tan-1- 125

  • tan-1135


397.

If the angle between the circles x2 + y2 - 2x - 4y + c = 0 and x2 + y2 - 4x - 2y + 4 = 0 is 60°, then c is equal to

  • 3 ± 52

  • 6 ± 52

  • 9 ± 52

  • 7 ± 52


398.

A circle S cuts three circles

x2 + y2 - 4x - 2y +4 = 0x2 + y2 - 2x - 4y + 1 = 0and x2 +y2 +4x +2y +1 = 0

Orthogonally. Then the radius of S is

  • 298

  • 2811

  • 297

  • 295


Advertisement
399.

The distance between the vertex and the focus of the parabola x2 - 2x + 3y - 2 = 0 is

  • 45

  • 34

  • 12

  • 56


400.

If (x1, y1) and (x2, y2) are the end points of a focal chord of the parabola y2 = 5x, then 4x1x2 + y1y2, is equal to

  • 25

  • 5

  • 0

  • 54


Advertisement