The centre and radius of the sphere x2 + y2 + z2 + 3x - 4z + 1 =

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

201.

The radius of the sphere x2 + y2 + z2 = 12x + 4y + 3z is

  • 13/2

  • 13

  • 26

  • 52


Advertisement

202.

The centre and radius of the sphere x2 + y2 + z2 + 3x - 4z + 1 = 0 are

  • - 32, 0, - 2; 212

  • 32, 0, 2; 21

  • - 32, 0, 2; 212

  • - 32, 0, 2; 212


C.

- 32, 0, 2; 212

The given equation of sphere is

x2 + y2 + z2 + 3x - 4z + 1 = 0

On comparing this equation with general equation of sphere x2 + y2 + z2 + 2ux + 2vy + 2wz + d = 0,

we get u = 32, v = 0, w = - 2 and d = 1

  Coordinates of centre of sphere              = - u, - v, - w             = - 32, 0, 2and radius of sphere = u2 + v2 + w2 - d             = 94 + 4 - 1             = 9 +124             = 212


Advertisement
203.

Let A and B are two fixed points in a plane, then locus of another point Con the same plane such that CA + CB = constant, (> AB) is

  • circle

  • ellipse

  • parabola

  • hyperbola


204.

The directrix of the parabola y2 + 4x + 3 = 0 is

  • x - 43 = 0

  • x + 14 = 0

  • x - 34 = 0

  • x - 14 = 0


Advertisement
205.

The length of the parabola y2 = 12x cut off by the latusrectum is

  • 62 + log1 + 2

  • 32 + log1 + 2

  • 62 - log1 + 2

  • 32 - log1 + 2


206.

Area enclosed by the curve π4x - 22 + y2 = 8 is

  • π sq unit

  • 2 sq unit

  • 3π sq unit

  • 4 sq unit


207.

The equation of a directrix of the ellipse x216 + y225 = 1 is :

  • 3y = 5

  • y = 5

  • 3y = 25

  • y = 3


208.

If the normal at (ap, 2ap) on the parabola y2 = 4ax, meets the parabola again at (aq2 , 2aq), then

  • p2 + pq + 2 = 0

  • p2 - pq + 2 = 0

  • q2 + pq + 2 = 0

  • p2 + pq + 1


Advertisement
209.

The curve described parametrically by x = t2 + 2t - 1, y = 3t + 5 represents :

  • an ellipse

  • a hyperbola

  • a parabola

  • a circle


210.

From the point P (16, 7), tangents PQ and PR are drawn to the circle x2 + y2 - 2x - 4y - 20 = 0. If C is the centre of the circle, then area of the quadrilateral PQCR is

  • 15 sq unit

  • 50 sq unit

  • 75 sq unit

  • 150 sq unit


Advertisement