The point on the straight line y = 2x + 11 which is nearest to th

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

251.

Equation of tangent to the circle x2 + y2 - 2x - 2y + 1 = 0 perpendicular to y = x is given by

  • x + y ± 1 = 0

  • x + y = 2 ± 3

  • x + y ± 3 = 0

  • None of these


252.

The locus of centre of circles which cuts orthogonally the circle x2 + y2 - 4x + 8 = 0 and touches x + 1 = 0, is

  • y2 + 6x + 7 = 0

  • x2 + y2 + 2x + 3 = 0

  • x2 + 3y + 4 = 0

  • None of the above


253.

The condition for the line lx + my + n = 0 to be a normal to x225 + y29 = 1 is

  • l29 + m2l25 = n2256

  • 9m2 + 25l2 = 256n2

  • l29 - m2l25 = n2256

  • None of these


254.

The radical centre of the system of circles

            x2 + y2 + 4x + 7 = 0,

2(x2 + y2) + 3x + 5y + 9 = 0

and               x2 + y2 + y = 0 is

  • (- 2, - 1)

  • (1, - 2)

  • (- 1, - 2)

  • None of these


Advertisement
Advertisement

255.

The point on the straight line y = 2x + 11 which is nearest to the circle 16(x2 + y) + 32x - 8y - 50 = 0, is

  • 92, 2

  • 92, - 2

  • - 92, 2

  • - 92, - 2


C.

- 92, 2

Let required point be α, β on the straight line y = 2x + 11, whch is nearest to the circle

16x2 + y2 + 32x - 8y - 50 = 0 x2 + y2 + 2x - 12y - 5016 = 0 Centre of circle = - 1, 14and radius = 1 + 116 + 5016 = 674Now, equation of straight line passing throughcentre - 1, - 14 and α, β is   y - 14 = β - 14α + 1x + 1     ...i

Now, gradient of this straight line = β - 14α + 1Sine, straightline (i) is perpendicular to the liney = 2x + 11 β - 14α + 1 × 2 = - 1    m1m2 = - 1  2β - 12 = - α - 1   2β + α = - 1 + 12 = - 12 4β + 2α = - 1             ...ii

 Point (α, β) lies on straight line     y = 2x + 11 β = 2α + 11 β - 2α = 11      ...iiiOn solving Eqs (i) and (ii), we get       5β = 10  β = 2and  2α = 2 - 11 = - 9     α = - 92 Required point is - 92, 2.

 


Advertisement
256.

The locus of the extrimities of the latusrectum of the family of ellipses b2x2 + y2 = a2b2 having a given major axis, is

  • x2 ± ay = a2

  • y2 ± bx = a2

  • x2 ± by = a2

  • y2 ± ax = b2


257.

The number of common tangents to two circles x2 + y2 = 4 and x2 + y2 - 8x + 12 = 0 is

  • 1

  • 2

  • 3

  • 4


258.

If the tangent at the point 2secθ, 3tanθ of the hyperbola x24 - y29 = 1 is parallel to 3x - y + 4 = 0, then the value of θ is

  • π4

  • π3

  • π6

  • π2


Advertisement
259.

If an equilateral triangle is inscribed in the circle x2 + y2 = a2, the lenth of its each side is

  • 2a

  • 3a

  • 32a

  • 13a


260.

If the vertex is (3,0) and the extremities of the latusrectum are (4, 3) and (4, - 3), then the equation of the parabola is

  • y2 = 4(x - 3)

  • x2 = 4(y - 3)

  • y2 = - 4(x + 3)

  • x2 = - 4(y + 3)


Advertisement