If the circle x2 + y2 + 2x + 3y + 1 = 0 cuts another ci

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

341.

If the circle x2 + y2 + 2x + 3y + 1 = 0 cuts another circle x2 + y+ 4x + 3y + 2 = 0 in A and B, then the equation of the circle with AB as a diameter is

  • x2 + y2  + x + 3y + 1 = 0

  • 2x2 + 2y2  + 2x + 6y + 1 = 0

  • x2 + y2  + x + 6y + 1 = 0

  • 2x2 + 2y2  + x + 3y + 1 = 0


B.

2x2 + 2y2  + 2x + 6y + 1 = 0

The equation of the circles are S1  x2 + y2 + 2x + 3y + 1 = 0and S2  x2 + y2 + 4x + 3y + 2 = 0Since, the circles cuts each other at A and B then equation of AB is S1 - S2 = 0 x2 + y2 + 2x + 3y + 1- x2 + y2 + 4x + 3y + 2 = 0 - 2x - 1 = 0 x = - 12Putting the value x = -12 in S2, we get14 + y2 - 2 + 3y + 2 = 0 4y2 + 12y + 1 = 0 y = - 12 ± 144 - 168 y = - 12 ± 1288 = - 12 ± 828 y = - 32 ± 2So intersection points are A- 12, - 32 + 2 and - 12,  - 32 - 2Then equation of circle with diameter AB is x + 12x + 12 + y+ 32 + 2 y+ 32 - 2 = 0

          x + 122 + y + 322 - 2 = 0 x2 + 14 + x +y2 + 94 + 3y - 2 = 0     x2 + y2 + x + 3y + 12 = 0 2x2 + 2y2 + 2x + 6y + 1 = 0


Advertisement
342.

The equation of the hyperbola which passes through the point (2, 3) and has the asymptotes 4x + 3y - 7 = 0 and x - 2y - 1 = 0 is

  • 4x2 + 5xy - 6y2 - 11x + 11y + 50 = 0

  • 4x2 + 5xy - 6y2 - 11x + 11y - 43 = 0

  • 4x2 - 5xy - 6y2 - 11x + 11y + 57 = 0

  • x2 - 5xy - y2 - 11x + 11y - 43 = 0


343.

The product of the perpendicular distances from any point on the hyperbola x2a2 - y2b2 = 1 to its asymtotes is

  • a2b2a2 - b2

  • a2b2a2 + b2

  • a2 + b2a2b2

  • a2 - b2a2b2


344.

If the lines 2x + 3y +12 = 0, x - yy + k = 0 are conjugate with respect to the parabola y2 = 8x, then k is equal to

  • 10

  • 72

  • - 12

  • - 2


Advertisement
345.

Find the equation to the parabola, whose axis parallel to they-axis and which passes through the points (0, 4), (1, 9) and (4, 5) is

  • y = - x+ x + 4

  • y = - x+ x + 1

  • y = - 1912x2 + 7912x + 4

  • y = - 1912x2 + 8912x + 4


346.

If the line y = 2x + c is a tangent to the circle x2 + y2 = 5, then a value of

  • 2

  • 3

  • 4

  • 5


347.

A line segment AM = a moves in the XOY plane such that AM is parallel to the X-axis. If A moves along the circle x2 + y= a2, then the locus of M is

  • x2 + y= 4a2

  • x2 + y= 2ax

  • x2 + y= 2ay

  • x2 + y= 2ax + 2ay


348.

If a chord of the parabola y = 4x passes through its focus and makes an angle 0 with the X-axis, then its length is

  • 4cos2θ

  • 4sin2θ

  • 4csc2θ

  • 4sec2θ


Advertisement
349.

If the straight line y = mx + c is parallel to the axis of the parabola y = bx and intersects the parabola at c28, c, then the length of the latus rectum is

  • 2

  • 3

  • 4

  • 8


350.

The eccentricity of the ellipse x2 + 4y2 + 2x + 16y + 13 = 0 is

  • 32

  • 12

  • 13

  • 12


Advertisement