If the area of the triangle formed by the pair of lines 8x2 - 6xy + y2 = 0 and the line 2x + 3y = a is 7, then a is equal to
14
28
If the line x + 3y = 0 is the tangent at (0, 0) to the circle of radius 1, then the centre of one such circle is
(3, 0)
A circle passes through the point (3, 4) and cuts the circle x2 + y2 = a2 orthogonally; the locus of its centre is a straight line. If the distance of this straight line from the origin is 25, then a is equal to
250
225
100
25
The equation to the line joining the centres of the circles belonging to the coaxial system of circles 4x2 + 4y2 - 12x + 6y - 3 + (x + 2y - 6) = 0 is
8x - 4y - 15 = 0
8x - 4y + 15 = 0
3x - 4y - 5 = 0
3x - 4y + 5 = 0
A.
8x - 4y - 15 = 0
Let x + y = k be a normal to the parabola y2 = 12x. If p is length of the perpendicular from the focus of the parabola onto this normal, then 4k - 2p2 is equal to
1
0
- 1
2
If the line 2x + 5y = 12 intersects the ellipse 4x2 + 5y2 = 20 in two distinct points A and B,then mid-point of AB is
(0, 1)
(1, 2)
(1, 0)
(2, 1)
Equation of one of the tangents passing through(2, 8) to the hyperbola 5x2 - y2 = 5 is
3x + y - 14 = 0
3x - y + 2 = 0
x + y + 3 = 0
x - y + 6 = 0
The area (in sq units) of the equilateral triangle formed by the tangent at (, 0) to the hyperbola x2 - 3y2 = 3 with the pair of asymptotes of the hyperbola is