If f(x) is an odd differentiable function defined on -&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

31.

If f(x) is an odd differentiable function defined on - ,  such that f'(3) = 2, then f'(- 3) is equal to

  • 0

  • 1

  • 2

  • 4


C.

2

Given that f(x) is an odd differentiable function.

Then, f(- x) = - f(x)

 - f'(- x) = - f'(x) f'( x) =  f'(x)              ...(i)

Put x = 3 in Eq. (i), we get

f'(- 3) = f'(3)

 f'(- 3) = 2               f'(3) = 2


Advertisement
32.

If f(x) = tan-1logex2logex2 + tan-13 + 2logx1 - 6logx

  • x2

  • x

  • 1

  • 0


33.

The number of points at which the function f(x) = maxa - x, a + x, b, -  < x < , 0 < a < b cannot be differentiable, is

  • 0

  • 1

  • 2

  • 3


34.

If f(x) is a function such that f'(x) = (x - 1)2(4 - x), then

  • f(0) = 0

  • f(x) is increasing in (0, 3)

  • x = 4 is a critical point of f(x)

  • f(x) is decreasing in (3, 5)


Advertisement
35.

Let f: R  R be a continuous function which satisfies f(x) = 0xf(t)dt. Then, the value of f(loge5) is

  • 0

  • 2

  • 5

  • 3


36.

Let f: [2, 2]  R  be a continuous function such that f(x) assumes only irrational values. If f(2) = 2, then

  • f(0) = 0

  • f(2 - 1) = 2 - 1

  • f(2 - 1) = 2 + 1

  • f(2 - 1) = 2


37.

Let [x] denotes the greatest integer less than or equal to x. Then, the value of α f · which the function

f(x) = sin- x2- x2, x  0α,              x = 0 is continuous at x = 0, is

  • α = 0

  • α = sin- 1

  • α = sin1

  • α = 1


38.

For all real values of a0, a1, a2, a3 satisfying a0 + a12 + a23 + a34 = 0, the equation a0 + a1x + a2x + a3x3 = 0 has a real root in the interval

  • [0, 1]

  • [- 1, 0]

  • [1, 2]

  • [- 2, - 1]


Advertisement
39.

Let f:R  R  be defined asf(x) = 0,              x is irrationalsinx,      x is rationalThen, which of the following is true?

  • f is discontinuous for all x

  • f is continuous for all x

  • f is discontinuous at x = kπ, where k is an integer

  • f is continuous at x = kπ, where k is an integer


40.

If limx0axex - blog1 + xx2 = 3, then the value of a and b are, respectively

  • 2, 2

  • 1, 2

  • 2, 1

  • 2, 0


Advertisement