Let R be the set of all real numbers and f : [- 1, 1] →

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

41.

The integrating factor of the differential equation

dydx + 3x2tan-1y - x31 + y2 = 0 is

  • ex2

  • ex3

  • e3x2

  • e3x3


42.

If y = e- xcos2x, then which of the following differential equation is satisfied?

  • d2ydx2 + 2dydx + 5y = 0

  • d2ydx2 + 5dydx + 2y = 0

  • d2ydx2 - 5dydx - 2y = 0

  • d2ydx2 + 2dydx - 5y = 0


43.

Let f be any continuously differentiable function on [a, b] and twice differentiable on (a, b) such that f(a) = f"(a) = 0 and f(b) = 0. Then,

  • f''(a) = 0

  • f'(x) = 0 for some x  a, b

  • f''(x)  0 for some x  a, b

  • f'''x = 0 for some x  a, b


44.

Let f : R  R  be such that f(2x - 1) = f(x) for all x  R. If f is continuous at x = 1 and f(1) = 1, then

  • f(2) = 1

  • f(2) = 2

  • f is continuous only at x = 1

  • f is continuous at all points


Advertisement
45.

Let f(x) be a differentiable function in [2, 7]. If f(2) = 3 and f'(x)  5 for all x in (2, 7), then the maximum possible value of f(x) at x = 7 is

  • 7

  • 15

  • 28

  • 14


46.

The function f(x) = tanπx - π22 + x2, where x denotes the greatest integer  x, is

  • continuous for all values of x

  • discontinuous at x = π2

  • not differentiable for some values of x

  • discontinuous at x = - 2


47.

The function f (x) = f(x) = asinx + bex is differentiable at x = 0 when

  • 3a + b = 0

  • 3a - b = 0

  • a + b = 0

  • a - b = 0


Advertisement

48.

Let R be the set of all real numbers and f : [- 1, 1]  R be defined by

f(x) = xsin1x,     x  00,                 x = 0 Then,

  • f satisfies tile conditions of Rolle's theorem on [-1, 1]

  • f satisfies the conditions of Lagrange's mean value theorem on [-1, 1]

  • f satisfies the conditions of Rolle's theorem on [0, 1]

  • f satisfies the conditions of Lagrange's mean value theorem on [0, 1]


D.

f satisfies the conditions of Lagrange's mean value theorem on [0, 1]

Given, f(x) = xsin1x,     x  00,                 x = 0

Continuity at x = 0,

LHL = limx0-xsin1x = 0RHL = limx0+xsin1x = 0and                      f(0) = 0 LHL = RHL = f(0)

Hence, f(x) is continuous for all values of x.

Differentiability at x = 0

 LHD = limh0fh - f0h = limh0h sin1hh        = - limh0 sin1h        = - sin10 =  some definite value

Thus, f( x) is not differentiable at x = 0.

Now, f(0) = 0 and f(1) = 1 sin(1)

 f(0)  f(1), Rolle's theorem is not satisfy.

Now, f'(c) = f(1) - f(0)b - 0 = sin1                = 1 sin1 - 01 - 0                = sin1which lies between 0 to 1.Hence, their exist a real number c  (0, 1)

Hence, Lagrange's mean value theorem is satisfy on [0, 1].


Advertisement
Advertisement
49.

Suppose that f(x) is a differentiable function such that f'(x) is continuous, f'(0) = 1 and f''(0) does not exist. Let g(x) = xf'(x), Then,

  • g'(0) does not exist

  • g'(0) = 0

  • g'(0) = 1

  • g'(0) = 2


50.

Applying Lagrange's Mean Value Theorem for a suitable function f(x) in [0, h], we have f(h) = f(0) + hf'(θh), 0 < θ < 1. Then, for f(x) = cos(x), the value of limh0+θ is

  • 1

  • 0

  • 1/2

  • 1/3


Advertisement