If f : R R is defined by
then the value of a so that f is continuous at 0 is
2
1
- 1
0
D.
0
Since, f(x) is continuous at x = 0
Let [ ] denotes the greatest integer function and f(x) = [tan2(x)] Then,
does not exist
f(x) is continuous at x = 0
f(x) is not differentiable at x = 0
f(x) = 1
If f(x) = (x - 2)(x - 4)(x - 6) ... (x - 2n), then f'(2) is
(- 1)n2n - 1 (n - 1)!
(- 2)n - 1 (n - 1)!
(- 2)n n!
(- 1)n - 12n (n - 1)!