The function f(x) = xtan-11x for x ≠ 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

221.

If the function f(x) = tanπ4 + x1x for x  0 is  = K for x = 0 continuous at x = 0, then K = ?

  • e

  • e- 1

  • e2

  • e- 2


222.

If x = f(t) and y = g(t) are differentiable functions of t, then d2ydx2 is

  • f't . g''t - g't . f''tf't3

  • f't . g''t - g't . f''tf't2

  • g't . f''t - f't . g''tf't3

  • g't . f''t + f't . g''tf't3


223.

If f(x) = = logsec2xcot2x for x  0= K                         for x = 0 is continuous at x = 0, then K is

  • e- 1

  • 1

  • e

  • 0


224.

If fx = x for  x 0= 0 for x > 0, then f(x) at x = 0 is

  • continuous but not differentiable

  • not continuous but differentiable

  • continuous and differentiable

  • not continuous and not differentiable


Advertisement
225.

Let f(x) = - 2sinx            if x  - π2Asinx + B if - π2 < x < π2cosx                 if x  π2

For what values of A and B, the function f(x) is continuous throughout the real line ?

  • A = - 1, B = 1

  • A = - 1, B = - 1

  • A = 1, B = - 1

  • A = 1, B = 1


226.

Let f(x) = αxsinπx2    for x  21                      for x = 0

where αx is such that limx0αx = .

Then the function f(x) is contonuous at x = 0 if αx is chosen as

  • 2πx

  • 1x2

  • 2πx2

     

  • 1x


227.

Let the equation ofa curve is given in implicit form as y = tanx + y. Then d2ydx2 in terms of y is

  • 21 + y2y6

  • - 21 + y2y6

  • - 21 + y2y5

  • 21 + y22y5


Advertisement

228.

The function f(x) = xtan-11x for x  0, f(0) = 0 is

  • differentiable at x = 0

  • neither continuous at x = 0 nor differentiable at x = 0

  • not continuous at x = 0

  • continuous at x = 0 but not differentiable at x = 0


D.

continuous at x = 0 but not differentiable at x = 0

Given,        fx = xtan-11x for x  0and f0 = 0   - π2  xtan-11x  π2 - π2x   xtan-11x  π2xHere, limx0xtan-11x      = limx0tan-11x1x      = 0             limt0xtAnd f0 = 0 fx is continuous at x = 0But, limx0fx - f0x - 0 = limx0tan-11x does not exist fx is not differentiable at x = 0.


Advertisement
Advertisement
229.

If function f(x) = xsin1x; x  0a;           x = 0 is continuous at x = 0, then the value of a is

  • 0

  • 1

  • - 1

  • None of these


230.

At which point the function f(x) = x2x, where [.] is greatest integer function, is discontinuous ?

  • Only positve integers

  • All postive and negative integers and (0,1)

  • all rational numbers

  • None of these


Advertisement