If y = logsinxtanx, then dydxπ4 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

351.

- aaxa2 - x2dx is equal to

  • π4

  • π3

  • π8

  • 0


352.

If y = tan-11 - cosx1 + cosx, then dydx will be

  • sinxcosx

  • π2

  • 12

  • 11 + cos2x


353.

The value of limx11 - x . tanπx2 will be

  • π2

  • 2π

  • 2π

  • π


354.

Let f(x) = x2 - 4x + 3x2 + 2x - 3, x  1k                   , x = 1 If f(x) is continuous at x = 1, then the value of k will be

  • 1

  • 12

  • - 1

  • - 12


Advertisement
355.

Let f(x) = xn . sin1x, x  00               , x = 0 Then, f(x) is differentiable at x = 0, if

  • n  0, 1

  • n  1, 2

  • n  1, 

  • n  - , 


356.

In which interval the function fx = log105x - x24 is defined ?

  • [1, 4]

  • [0, 5)

  • (0, 1)

  • (- 1, )


357.

limx0x . 2x - x1 - cosx equals

  • log2

  • 12log2

  • 2log2

  • None of these


358.

Let f(2) = 4 and f'(2)= 1. Then, limx2xf2 - 2fxx - 2 is given by

  • 2

  • - 2

  • - 4

  • 3


Advertisement
Advertisement

359.

If y = logsinxtanx, then dydxπ4 is equal to

  • 4log2

  • - 4log2

  • - 4log2

  • None of these


C.

- 4log2

Let y = logsinxtanx         = logtanxlogsinx y = 1 - logcosxlogsinx     y' = - - logsinxsinxcosx - logcosx . cosxsinxlogsinx2y'π4 = 2loglog12log122 = 2log1 - 12log2            = - 4log2 dydxπ4 = - 4log2


Advertisement
360.

If y = logexx - 22 for x  0, 2, then y'(3) is equal to

  • 13

  • 23

  • 43

  • None of these


Advertisement