If f(x) = sinπx2, if x < 13 -

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

371.

If fx = log1 + x1 - x and gx = 3x +x31 + 3x2, then fog(x) is equal to

  • - f(x)

  • 3f(x)

  • [f(x)]3

  • None of these


372.

Let f(x) be differentiable on the interval (0, ) such that f(1) =1 and limtt2fx - x2ftt - x = 1 for each x > 0. Then, f(x) is equal to

  • 13x + 23x2

  • - x3 + 4x23

  • - 1x

  • - 1x + 2x2


373.

The number of points, where f(x) = [sin(x) + cos(x)] (where [] denotes the greatest integerfunction) and x  (0, 2) is not continuous, is

  • 3

  • 4

  • 5

  • 6


374.

limx22 -  2 + x21/3 - (4 - x)1/3  is equal to

  • 2 . 3-1/2

  • 3 . 2-4/3

  • - 3 . 24/3

  • None of the above


Advertisement
375.

If 2a + 3b + 6c = 0, then the equation ax2 + bx + c = 0 has atleast one real root in

  • (0, 1)

  • 0, 12

  • 14, 12

  • None of the above


Advertisement

376.

If f(x) = sinπx2, if x < 13 - 2x,   if x  1, then f(x) has

  • local minimum at x = 1

  • local maximum at x = 1

  • Both local maximum and local minimum at x = 1

  • None of the above


B.

local maximum at x = 1

Given function is,fx = sinπx2, if x < 13 - 2x,   if x  1 LHL and RHL of f(x) is 1, when x1and f1 = 3 - 2 = 1 f(x) is continuous at x = 1Now, graph of functlon f(x) is

From the above graph of function, we see tha tf(x) has local maxima at x = 1.


Advertisement
377.

Let f : R  R be a differentiable function and f(1) = 4. Then, the value of limx14fx2tx - 1dt is

  • 8f'(1)

  • 4f'(1)

  • 2f'(1)

  • f'(1)


378.

If f''(x) = - f(x) and g(x) = f'(x) anf F(x) = fx22 + x22 and given that F(5) = 5, then the value of F(10) is

  • 15

  • 0

  • 5

  • 10


Advertisement
379.

A function g defined for all real x > 0 satisfies g(1) = 1, g'(x2) = x3 for all x > 0, then value of g(4) is

  • 133

  • 3

  • 675

  • None of these


380.

A particle moving on a curve has the position at a time t is given by x = f'(t)sin(t) + f'(t)cos(t), y = f'(t)cos(t) - f'(t)sin(t), where f is a twice differentiable function. Then, the velocity of the particle at time t is

  • f'(t) + f''(t)

  • f'(t) - f''(t)

  • f'(t) + f'''(t)

  • f'(t) - f''(t)


Advertisement