The point/points of discontinuity of the function f(x) = x&n

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

381.

f(x) and g(x) are differentiable in the interval [0, 1] such that f(0) = 2, g(0) = 0, f(1) = 6, g(1) = 2, then Rolle's theorem is applicable for which of the following in [0, 1] ?

  • f(x) - g(x)

  • f(x) - 2g(x)

  • f(x) + 3g(x)

  • None of the above


382.

The positive root of equation x2 - 2x - 5 = 0 lies in the interval

  • {0, 1}

  • (1, 2)

  • (2, 3)

  • (3, 4)


383.

One root of the equation x2 - 4x+ 1 = 0 is between 1 and 2. The value ofthis root using Newton-Raphson method will be

  • 1.775

  • 1.850

  • 1.875

  • 1.950


Advertisement

384.

The point/points of discontinuity of the function f(x) = x + 3,     if x  - 3- 2x,         if - 3 < x < 36x + 2,      if x  3 is/are

  • 3, - 3

  • 3

  • - 3

  • None of these


B.

3

We have,fx = x + 3,     if x  - 3- 2x,         if - 3 < x < 36x + 2,      if x  3For continuity at x = - 3limx- 3-fx = limx- 3-x + 3                      = - 3  + 3 = 6 limx- 3+fx = limx- 3+- 2x = - 2- 3 = 6 f(x) is continuous at x = - 3For continuity at x = 3     limx3-fx = limx3-- 2x = - 23 = - 6     limx3-fx = limx3+6x + 2 = 63 + 2 = 20 limx3+fx  limx3+fx Hence, f(x) is discontmuous of x = 3


Advertisement
Advertisement
385.

The value of ddxsintan-1ex at x = 0  is

  • 0

  • - 2

  • - 122

  • - 12


386.

If f(x) = x2 - 10x + 25x2 - 7x + 10 and f is continuous at x = 5, then f(5) is equal to

  • 0

  • 5

  • 10

  • 25


387.

If h(x) = xxx, then at x = 1, h'xhx is equal to

  • h(x)

  • 1hx

  • 1 + loghx

  • - loghx


388.

ddxsin-13x - 4x3 is equal to

  • 34 - x2

  • 31 - x2

  • 14 - x2

  • - 14 - x2


Advertisement
389.

If f(x) = x2x + a, then f''(a) is equal to

  • 4a

  • 18a

  • 14a

  • 8a


390.

If u = ex2 - y2, then

  • xux = yuy

  • yux = xyy

  • yux + xuy = 0

  • x2uy + y2ux = 0


Advertisement