If z = sec-1x4 + y4 - 8x2y2x2 + y2, then x∂z∂y + y∂z∂y is equal to
cotz
2cotz
2tanz
2secz
If f : R → R is defined byf(x) = 2sinx - sin2x2xcosx, if x ≠ 0, a , if x = 0, then the value of a so that f is continuous at 0 is
2
0
1
x = cos-111 + t2, y = sin-1t1 + t2 ⇒ dydx = ?
tan(t)
sin(t)cos(t)
ddxa tan-1x + blogx - 1x + 1 = 1x4 - 1 ⇒ a - 2b = ?
- 1
y = easin-1x ⇒ 1 - x2yn + 2 - 2n + 1xyn + 1 is equal to
-n2 + a2yn
n2 - a2yn
n2 + a2yn
-n2 - a2yn
If f : R → R defined byf(x) = 1 + 3x2 - cos2xx2, for x ≠ 0k, for x= 0is continuous at x = 0, then k is equal to
5
6
If f(x) = cosxcos2x. . . cosnx, then f'(x) + ∑r = 1n rtanrxfx = ?
f(x)
- f(x)
2f(x)
B.
f(x) = cosxcos2x. . . cosnxf'(x) = - sinxcos2x . cosnx + cosxddxcosxcos2x. . . cosnxf'(x) = - sinxcos2x . . . cosnx + cosx- 2sin2xcos3x . . . cosnx + cos2xddxcos3x . cos4x . . . cosnxf'(x) ⇒ - sinxcos2x . . .cosnx - 2cosxsin2xcos3x . . . cosnx + cosx . cos2x ddxcos3x . cos4x cosnxf'(x) ⇒ - sinxcos2x . . .cosnx - 2cosxsin2xcos3x . . . cosnx - 3cosxcos2x . sin3x . cosnx - ncosx cos2x . . . sinnx
So,⇒ f'(x) + ∑r = 1n rtanrxfx = f'(x) + tanx + 2tan2x + 3tan3x + . . . + ntannxfx= f'(x) + fxtanx + 2fxtan2x + 3fxtan3x + . . . + ntannxfx= f'(x) +sinx . cos2x . . .cosnx + 2cosxsin2x . . . cosnx + . . . + ncosxcos2x . . sinnx= f'(x) - f'(x) ⇒ 0Hence, f'(x) + ∑r = 1n rtanrxfx = 0
If y = cos-1a2 - x2a2 + x2 + sin-12axa2 + x2,then dydx = ?
ax2 + a2
2ax2 + a2
4ax2 + a2
a2x2 + a2
If fx = sinx + cosx,then fπ4fivπ4 = ?
3
4
If y = sinmsin-1x, then 1 - x2y2 - xy1 = ?Here, yn denotes dnydxn
m2y
- m2y
2m2y
- 2m2y