If x, y, z are all positive and are the pth , qth and rth terms o

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

41.

If the system of equations x + ky - z = 0, 3x - ky - z = 0 and x - 3y + z =0, has non-zero solution, then k is equal to

  • - 1

  • 0

  • 1

  • 2


42.

The value of the determinant

1cosα - βcosαcosα - β1cosβcosαcosβ1 is

  • α2 + β2

  • α2 - β2

  • 1

  • 0


43.

If a, b and c are in AP, then determinnant

x + 2x + 3x + 2ax + 3x +4x +2bx + 4x +5x + 2c is

  • 0

  • 1

  • x

  • 2x


44.

The value of the determinant cosα- sinα1sinαcosα1cosα + β- sinα + β1 is

  • independent of α

  • independent of β

  • independent of α and β

  • None of the above


Advertisement
45.

Which of the following is correct?

  • Determinant is a square matrix

  • Determinant is a number associated to a matrix

  • Determinant is a number associated to a square matrix

  • All of the above


46.

If α, β and γ are the roots of x3 + ax2 + b = 0, then the value of αβγβγαγαβ is

  • - a3

  • a3 - 3b

  • a3

  • a2 - 3b


47.

The system of equations 2x + y - 5 = 0, x - 2y + 1 = 0, 2x - 14y - a= 0, is consistent. Then, a is equal to

  • 1

  • 2

  • 5

  • None of these


Advertisement

48.

If x, y, z are all positive and are the pth , qth and rth terms of a geometric progression respectively, then the value of determinant logxp1logyq1logzr1 equals

  • log(xyz)

  • (p - 1)(q - 1)(r - 1)

  • pqr

  • 0


D.

0

Let a and R be the first term and common ratio of a GP.

  Tp = aRp - 1 = x      Tq = aRq - 1 = y       Tr = aRr - 1 = z   log(x) = loga + (p - 1)logR       logy = loga + (q - 1)logRand logz = loga + (r - 1)logR logxp1logyq1logzr1 = loga + (p - 1)logRq1loga + (q - 1)logRq1loga + (r - 1)logRr1= logap1logaq1logar1 + p - 1logRp1(q - 1)logRq1(r - 1)logRr1

= loga 1p11q11r1 + logRp - 1p - 11q - 1q - 11r - 1r - 11        [  C2  C2 - C3 ]= 0 + 0 = 0         two columns are identical


Advertisement
Advertisement
49.

The system of equations

x + y + z = 0

2x + 3y + z = 0

and x + 2y = 0

has

  • a unique solution; x = 0, y = 0, z = 0

  • infinite solutions

  • no solution

  • finite number of non-zero solutions


50.

If D = diag (d1, d2, ..., dn), where di  0, for i = 1, 2, ... , n then D-1 is equal to

  • DT

  • D

  • adj(D)

  • diagd1-1, d2-1, ..., dn-1


Advertisement