Solution of the differential equation xdy - ydx = 0 represents a

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

51.

Solution of the differential equation xdy - ydx = 0 represents a

  • parabola

  • circle

  • hyperbola

  • straight line


D.

straight line

x . dy - y . dx = 0 xdy = ydx dyy = dxx log(y) = log(x) +log(c) log(y) b = log(cx)  y = xc


Advertisement
52.

The general solution of the differential equation

dydx = ey + x + ey - x is

  • e- y = ex - e- x + c

  • e- y = e- x - ex + c

  • e- y = ex + ex + c

  • ey = ex + e- x + c


53.

The order of the differential equation

d2ydx2 = 1 + dydx2 is

  • 3

  • 2

  • 1

  • 4


54.

The degree of the differential equation

1 + dydx253 = d2ydx2 is

  • 1

  • 5

  • 103

  • 3


Advertisement
55.

The differential equation of all parabolas whose axes are parallel to y-axis, is

  • d3ydx3 = 0

  • d2ydx2 = 0

  • d2ydx2 + dydx = 0

  • d2ydx2 + dydx + y = 0


56.

The solution of the differential equation dydx = ey + x + ey - x is

  • e- y = ex - e- x + c, c integrating constant

  • e- y = e- x - ex + c, c integrating constant

  • e- y = ex + e- x + c, c integrating constant

  • e- y + ex - e- x = c, c integrating constant


57.

If x = etsint, y = etcost, then d2ydx2 at x = π is

  • 2eπ

  • 12eπ

  • 12eπ

  • 2eπ


58.

The value of dydx at x = π2, where y is given by y = xsinx + x, is

  • 1 + 12π

  • 1

  • 12π

  • 1 - 12π


Advertisement
59.

The order and degree of the following differential equation 1 + dydx252 = d3ydx3 are respectively

  • 3, 2

  • 3, 10

  • 2, 3

  • 3, 5


60.

The differential equation of the family of circles passing through the fixed points (a, 0) and (- a, 0) is

  • y1(y2 - x2) + 2xy + a2 = 0

  • y1y2 + xy + a2x2 = 0

  • y1(y2 - x2 + a2) + 2xy = 0

  • y1(y2 + x2) - 2xy + a2 =  0


Advertisement