The differential equation obtained by eliminating arbitrary const

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

171.

Let y = y(x) be the solution of the differential equation, x2 + 1dydx + 2xx2 + 1y = 1 such that y(0) = 0. If ay1 = π32, then the value of 'a' is :

  • 14

  • 1

  • 116

  • 12


172.

The solution of the differential equation xdydx + 2y = x2, (x  0) with y(1)  = 1, is :

  • y = 45x3 + 15x2

  • y = 34x3 + 14x2

  • y = x24 + 34x2

  • y = x35 + 15x2


173.

If y = y(x) is the solution of the differential equation dydx = tanx - ysec2x, x  - π2, π2, such that y(0) = 0, then y- π4 is equal to

  • 2 + 1e

  • e - 2

  • 12 - e

  • 1e - 2


174.

Let y = y(x) be the solution of the differential equation dydx + ytanx = 2x +x2tanx, x  - π2, π2 such that if y(0) = 1, then

  • y'π4 - y'- π4 = π - 2

  • yπ4 - y- π4 = 2

  • yπ4 + y- π4 = π22 + 2

  • y'π4 + y'- π4 = - 2


Advertisement
175.

The solution of the differential equation dxx + dyy = 0 is

  • xy = c

  • x + y = c

  • log(x)log(y) = c

  • x2 + y2 = c


Advertisement

176.

The differential equation obtained by eliminating arbitrary constants from y = a . ebx, is

  • yd2ydx2 + dydx = 0

  • yd2ydx2 - dydx = 0

  • yd2ydx2 - dydx2 = 0

  • yd2ydx2 + dydx2 = 0


C.

yd2ydx2 - dydx2 = 0

The given equation is

y = aebx                ... (i)

On differentiating w.r.t. x, we get

                   dydx = abebx

Again, differentiating w.r.t. x, we get

                  d2ydx2 = ab2ebx         aebxyd2ydx2 = a2b2e2bx                yd2ydx2 = dydx2 yd2ydx2 - dydx2 = 0


Advertisement
177.

f(x) is a polynomial of degree 2, f(0) = 4, f'(0) = 3 and f''(0) = 4, then f(- 1) is equal to

  • 3

  • - 2

  • 2

  • - 3


178.

Solution of differential equation sec(x)dy - cosec(y)dx = 0 is

  • cos(x) + sin(y) = c

  • sin(x) + cos(y) = 0

  • sin(y) - cos(x) = c

  • cos(y) - sin(x) = c


Advertisement
179.

The point P(9/2, 6) lies on the parabola y2 = 4ax, then parameter of the point P is

  • 3a2

  • 23a

  • 23

  • 32


180.

Solution of dydx = 3x +y is

  • 3x + y = c

  • 3x + 3y = c

  • 3- y

  • 3x + 3- y = c


Advertisement