The point P(9/2, 6) lies on the parabola y2 = 4ax, then parameter

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

171.

Let y = y(x) be the solution of the differential equation, x2 + 1dydx + 2xx2 + 1y = 1 such that y(0) = 0. If ay1 = π32, then the value of 'a' is :

  • 14

  • 1

  • 116

  • 12


172.

The solution of the differential equation xdydx + 2y = x2, (x  0) with y(1)  = 1, is :

  • y = 45x3 + 15x2

  • y = 34x3 + 14x2

  • y = x24 + 34x2

  • y = x35 + 15x2


173.

If y = y(x) is the solution of the differential equation dydx = tanx - ysec2x, x  - π2, π2, such that y(0) = 0, then y- π4 is equal to

  • 2 + 1e

  • e - 2

  • 12 - e

  • 1e - 2


174.

Let y = y(x) be the solution of the differential equation dydx + ytanx = 2x +x2tanx, x  - π2, π2 such that if y(0) = 1, then

  • y'π4 - y'- π4 = π - 2

  • yπ4 - y- π4 = 2

  • yπ4 + y- π4 = π22 + 2

  • y'π4 + y'- π4 = - 2


Advertisement
175.

The solution of the differential equation dxx + dyy = 0 is

  • xy = c

  • x + y = c

  • log(x)log(y) = c

  • x2 + y2 = c


176.

The differential equation obtained by eliminating arbitrary constants from y = a . ebx, is

  • yd2ydx2 + dydx = 0

  • yd2ydx2 - dydx = 0

  • yd2ydx2 - dydx2 = 0

  • yd2ydx2 + dydx2 = 0


177.

f(x) is a polynomial of degree 2, f(0) = 4, f'(0) = 3 and f''(0) = 4, then f(- 1) is equal to

  • 3

  • - 2

  • 2

  • - 3


178.

Solution of differential equation sec(x)dy - cosec(y)dx = 0 is

  • cos(x) + sin(y) = c

  • sin(x) + cos(y) = 0

  • sin(y) - cos(x) = c

  • cos(y) - sin(x) = c


Advertisement
Advertisement

179.

The point P(9/2, 6) lies on the parabola y2 = 4ax, then parameter of the point P is

  • 3a2

  • 23a

  • 23

  • 32


D.

32

We know that, coordinates of parametric point on the parabola y2 = 4ax is (at2, 2at).

          at2 = 92            ...iand       2at = 6 t = 62a = 3a           ...ii

On putting this value in Eq. (i), we get

a3a2 = 92 9a = 92  a = 2

On putting the value of a in Eq. (ii), we get

      t = 32

 Parameter of the point P is 32


Advertisement
180.

Solution of dydx = 3x +y is

  • 3x + y = c

  • 3x + 3y = c

  • 3- y

  • 3x + 3- y = c


Advertisement