The general solution of the differential equation 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

261.

The general solution of the differential equation 1 - x2y2 . dx = y . dx + x . dy is

  • sinxy = x +C

  • sin-1xy + x = C

  • sinx +C = xy

  • sinxy + x = C


262.

If m and n are order and degree of the differential equation y''5 + y''3y''' + y''' = sinx, then

  • m = 3, n = 5

  • m = 3, n = 1

  • m = 3, n = 3

  • m = 3, n = 2


263.

The order and degree of the differential equation y = xdydx + 2dydx is

  • 1, 2

  • 1, 3

  • 2, 1

  • 1, 1


Advertisement

264.

The general solution of the differential equation dydx + yx = 3x is

  • y = x - Cx

  • y = x + Cx

  • y = x2 - Cx

  • y = x2 + Cx


C.

y = x2 - Cx

D.

y = x2 + Cx

Given dlfferentlal equation is dydx + yx = 3xIt is a linear dlfferential equation of the formdydx + Py = Q P = 1x and Q = 3x IF = ePdx         = e1xdx         = elogx = x Complete solution is      yx = 3x × x dx +C     ...i  yx = 3x33 + C   y = x2 + CxAlso, Eq (i) can be written as      yx = 3x × x dx -C yx = x3 - C  y = x2 - Cx


Advertisement
Advertisement
265.

The order of differential equation of all circles of given radius 'a' is

  • 1

  • 4

  • 3

  • 2


266.

The solution of differential equation xdydx + 2y = x2 is

  • y = x4 + Cx2

  • y = x2 + C4x2

  • y = x4 + C4x2

  • y = x24 + C


267.

The differential coefficient of log10(x) with respect to logx(10) is

  • 1

  • - log10x2

  • logx102

  • x2100


268.

The solution for the differential equation dydx + dxx = 0 is

  • 1y + 1x = C

  • logxlogy = C

  • xy = C

  • x + y = C


Advertisement
269.

The order and degree of the differential equation 1 + dydx2 + sindydx34 = d2ydx2

  • order = 2, degree = 3

  • order = 2, degree = 4

  • oreder = 2, degree = 34

  • order = 2, degree = not defined


270.

Integrating factor of xdydx - y = x4 - 3x is

  • x

  • log(x)

  • 1x

  • - x


Advertisement