The differential equation of the equation y2 = m(x2 - a2) is fro

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

281.

The degree and order of the differential equation of the family of all parabolas whose axis is X-axis, are respectively

  • 2, 1

  • 1, 2

  • 3, 2

  • 2, 3


282.

Solution of the differential equation ydx - xdy = x2ydx

  • yex2 = cx2

  • ye- x2 = cx2

  • y2ex2 = cx2

  • y2e- x2 = cx2


283.

The solution of the differential equation 1 + y2 + x - etan-1ydydx = 0 is

  • x - 2 = e2tan-1y + c

  • 2xetan-1y = e2tan-1y + c

  • xetan-1y = tan-1y + c

  • xe2tan-1y = etan-1y + c


284.

Solution of the differential equation (x + y - 1)dx + (2x+ 2y - 3)dy = 0

  • y + x + log (x + y - 2) = c

  • y + 2x + log (x + y - 2) = c

  • 2y + x + log (x + y - 2) = c

  • 2y + 2x + log (x + y - 2) = c


Advertisement
285.

The differential equation for the family of curve x2 + y2 - 2ay = 0, where a is an arbitrary constant, is

  • 2(x2 - y2)y' = xy

  • 2(x2 + y2)y' = xy

  • (x2 - y2)y' = 2xy

  • (x2 + y2)y' = 2xy


286.

Solution of the differential equation cosxdydx + ysinx = 1 is

  • ysecx + tanx = c

  • ysecx = tanx + c

  • ytanx = secx + c

  • ytanx = secxtanx + c


287.

The solution of the differential equation ydx + (x + x2y)dy = 0 is

  • - 1xy = c

  • - 1xy + logy = c

  • 1xy = logy + c

  • logy = cx


Advertisement

288.

The differential equation of the equation y2 = m(x2 - a2) is

  • ydydx = yd2ydx2 + dydx2x

  • ydydx = yd2ydx2 - dydx2x

  • yd2ydx2 = yd2ydx2 + dydx2x

  • None of the above


A.

ydydx = yd2ydx2 + dydx2x

The given equation isy2 = mx2 - a2        ...iOn differentiating w.r.t. x, we get 2ydydx = m2x  ydydx = mx           ...iiAgain, differentiating w.r.t. x, we getyd2ydx2 + dydx2xOn putting the value of m in Eq. (ii), we getydydx = yd2ydx2 + dydx2x


Advertisement
Advertisement
289.

dydx = ax +hby + k will be parabola, if

  • a = 0

  • b = 1

  • a = 1

  • None of these


290.

The number of real solutions of tan-1xx + 1 + sin-1x2 + x + 1 = π2 is

  • zero

  • one

  • two

  • infinite


Advertisement