Solution of differential equation dydx = 2xy 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

291.

The differential equation of all straight lines passing through the point (1, - 1), is

  • y = x + 1dydx + 1

  • y = x + 1dydx - 1

  • y = x - 1dydx + 1

  • y = x - 1dydx - 1


292.

Integrating factor of differential equation cosxdydx + ysinx = 1 is

  • cosx

  • tanx

  • secx

  • sinx


293.

The order and degree of the differential equation d2ydx2 + dydx13 + x14 = 0 are respectively

  • 2, 3

  • 3, 3

  • 2, 6

  • 2, 4


294.

The general solution of the differential equation ydx + (1 + x2) tan- 1(x)dy = 0, is

  • ytan-1x = c

  • xtan-1y = c

  • y + tan-1x = c

  • x + tan-1y = c


Advertisement
Advertisement

295.

Solution of differential equation dydx = 2xy is

  • y = cex2

  • y2 = 2x2 + c

  • y = ce- x2

  • y = x2 + c


A.

y = cex2

The given differential equation is          dydx = 2xy 1ydy = 2xdx logy = x2 + logc      yc = ex2      y = cex2


Advertisement
296.

The second order differential equation is

  • y' + x = y2

  • y'y'' + y = sin(x)

  • y''' + y'' + y = 0

  • y' = y


297.

The solution of the differential equation dydx - yx = 1 is

  • x2loge(x) + y = c

  • xloge(x) + cx = y

  • x2loge(x) - y = c

  • xloge(x) + y = cx


298.

An integrating factor of the differential equation 1 - x2dydx - xy = 1, is

  • - x

  • x1 - x2

  • 1 - x2

  • 12log1 - x2


Advertisement
299.

Solve dydxtany = sinx + y + sinx - y

  • secx - 12tany = c

  • logsinx + y = c

  • secx + tany = c

  • secy + 2cosx = c


300.

Find the differential equation of curves y = Aex + Be-x fordifferent values of A and B

  • d2ydx2 - 2y = 0

  • d2ydx2 = y

  • d2ydx2 = 4y + 3

  • d2ydx2 + y = 0


Advertisement