The order and degree of the differential equation d2ydx2&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

311.

The integrating factor of the differential equation xdydx - y = 2x2 is

  • 1x

  • x

  • e-x

  • e-y


312.

If ddxfx = 4x3 - 3x4 such that f(2) = 0. Then, f(x) is

  • x3 + 1x4 - 1298

  • x4 + 1x3 + 1298

  • x3 + 1x4 + 1298

  • x4 + 1x3 - 1298


313.

The order and degree of the differential equation d3ydx32 - 3d2ydx2 + 2dydx4 = y4 are

  • 1, 4

  • 3, 4

  • 2, 4

  • 3, 2


314.

The solution of the differential equation (1 + y2) dx = (tan-1((y) - x)dy is

  • xetan-1y = (1 - tan-1y)etan-1y + C

  • xetan-1y = (tan-1y - 1)etan-1y + C

  • x = tan-1y - 1 + Cetan-1y

  • None of the above


Advertisement
315.

The solution of the differential equation xdydx = y - xtanyx is

  • xsinxy + C = 0

  • xsiny + C = 0

  • xsinyx = C

  • None of these


316.

The particular solution of cosdydx = awhere, a  R, (y = 2 when x = 0), is

  • cosy - 2x = a

  • siny - 2x = a

  • cos-1x = y + a

  • y = acos-1x


Advertisement

317.

The order and degree of the differential equation d2ydx2 = y + dydx214 are given by

  • 4 and 2

  • 1 and 2

  • 1 and 4

  • 2 and 4


D.

2 and 4

Given, differential equation is           d2ydx2 = y + dydx214 d2ydx24 = y + dydx2Hence, order = 2 and degree = 4


Advertisement
318.

The differential equation of the family of circles touching the y-axis at the origin is

  • xy' - 2y = 0

  • y'' - 4y' + 4y = 0

  • 2xyy' + x2 = y2

  • 2yy' + y2 = x2


Advertisement
319.

Solution of the equation cos2xdydx - tan2xy = cos2x, x < π4, where yπ6 = 338, is given by 

  • ytan2x1 - tan2x = 0

  • y1 - tan2x = C

  • y = sin2x + C

  • y = 12 sin2x1 - tan2x


320.

The equation of the curve through the point (1, 0), whose slope is y - 1x2 + x, is

  • 2x(y - 1) + x + 1 = 0

  • (x + 1)(y - 1) + 2x = 0

  • x(y - 1)(x + 1) + 2 = 0

  • None of these


Advertisement