The solution of xdx + ydy = x2ydy - xy2dx is from Mathematics Di

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

331.

The solution of the differential equation 1 + y2 + x - etan-1ydydx = 0 is given by

  • x - 2 = ketan-1y

  • 2xetan-1y = e2tan-1y + k

  • xetan-1y = tan-1y + k

  • xetan-1y = etan-1y + k


332.

The integrating factor of the differential equation dydx + yx = x3 - 3 will be

  • x

  • log(x)

  • - x

  • ex


Advertisement

333.

The solution of xdx + ydy = x2ydy - xy2dx is

  • x2 - 1 = C(1 + y2)

  • x2 + 1 = C(1 - y2)

  • x2 - 1 = C(1 - y2)

  • x2 + 1 = C(1 - y2)


A.

x2 - 1 = C(1 + y2)

We have,         xdx + ydy = x2ydy - xy2dx xdx + xy2dx = x2ydy - ydy  1 +y2xdx = - 1 - x2ydyOn integrating both sides,        2x- 1 + x2 = 2ydy1 +y2 log- 1 +x2 = log1 + y2 + logc            x2 - 1 = C1 +y2


Advertisement
334.

The solution of x2 + y2dydx = 4 is

  • x2 + y2 = 12x + C

  • x2 + y2 = 3x + C

  • x2 + y2 = 8x + C

  • x3 + y3 = 12x + C


Advertisement
335.

The solution of dydx + y = ex is

  • 2y = e2x + C

  • 2yex = ex + C

  • 2yex = e2x + C

  • 2ye2x = 2ex + C


336.

Order of the differential equation of the family of all concentric circles centered at (h, k) is

  • 1

  • 2

  • 3

  • 5


337.

The solution of dydx + 13y = 1 is

  • y = 3 + cex3

  • y = 3 + ce - x3

  • 3y = c + e x3

  • y2 + x + x2 + 2 = ce2x


338.

y + x2 =dydx has the solution

  • y + x2 + 2x + 2 = cex

  • y + x + 2x2 + 2 = cex

  • y2 + x + x2 + 2 = ce2x

  • y + x + x2 + 2 = ce2x


Advertisement
339.

The solution of dydx = xy - 13 is

  • x23 + y23 = c

  • y23 - x23 = c

  • x13  +  y13 = c

  • y13 - x13 = c


340.

The differential equation of the family of parabola with focus as the origin and the axis as X-axis, is

  • ydydx2 + 4xdydx = 4y

  • - ydydx2 = 2xdydx - y

  • ydydx2 + y = 2xydydx

  • ydydx2 + 2xydydx + y = 0


Advertisement