Let f(x) = x - [x], for every real x, where [x] is the greatest integer less than or equal to x. Then, ∫- 11fxdx is :
1
2
3
0
If ∫0x2ftdt = xcosπx, then the value of f(4) is :
14
- 1
- 14
If f(x) = 2 - xcosx2 + xcosx and g(x) = logex, (x > 0) then the value of integral ∫- π4π4g(f(x))dx is :
loge(3)
loge(1)
loge(2)
logee
∫sin5x2sinx2dx is equal to :
(where c is a constant of integration)
x + 2sinx + 2sin2x + c
2x + sinx + sin2x + c
2x + sin2x + 2sinx + c
x + sin2x + 2sinx + c
If ∫dxx31 + x623 = xf(x)(1 + x6)13 + C where C is a constant of integration, then the function f(x) is equal to :
- 12x2
- 16x3
3x2
- 12x3
Let f(x) = ∫0xg(t)dt, where g is a non–zero even function. If f(x + 5) = g(x), then ∫0xf(t)dt equals :
∫x + 55g(t)dt
2∫5x + 5g(t)dt
∫5x + 5g(t)dt
5∫x + 55g(t)dt
If f : R → R is a differentiable function and f(2) = 6, then limx→2∫6f(x)2t dtx - 2 is
24f'(2)
12f'(2)
2f'(2)
The value of the integral ∫01xcot-11 - x2 + x4dx is
π2 - 12loge2
π4 - loge2
π4 - 12loge2
π2 - loge2
If ∫esecxsecxtanxfx + secxtanx + sec2xdx = esecxf(x) + C, then a possible choice of f(x) is :
xsecx + tanx + 12
secx + tanx - 12
secx + tanx + 12
secx - tanx - 12
The value of ∫0π2sin3xsinx + cosxdx is :
π - 24
π - 28
π - 14
π - 12